Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(x^2-2\left(m+1\right)x+4m-3=0\) (1) là phương trình bậc hai một ẩn
Có \(\Delta'=m^2-2m+4>0\)nên phương trình (1) luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Áp dụng ĐL Vi-et có: \(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=4m-3\end{cases}}\)
Ta có: \(2x_1+x_2=5\Leftrightarrow x_1=5-\left(x_1+x_2\right)\Rightarrow x_1=5-\left(2m+2\right)=3-2m\)
Giả sử: \(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=2m+2+\sqrt{m^2-2m+4}\)
Khi đó: \(2m+2+\sqrt{m^2-2m+4}=3-2m\)\(\Leftrightarrow\sqrt{m^2-2m+4}=1-4m\)
\(\Leftrightarrow\hept{\begin{cases}m\le\frac{1}{4}\\5m^2-2m-1=0\end{cases}}\Leftrightarrow m\le\frac{1}{4}\) và \(\orbr{\begin{cases}m=\frac{1+\sqrt{6}}{5}\left(l\right)\\m=\frac{1-\sqrt{6}}{5}\left(c\right)\end{cases}}\)
Giả sử \(x_1=\frac{-b'-\sqrt{\Delta'}}{a}=2m+2-\sqrt{m^2-2m+4}\)
Khi đó: \(\sqrt{m^2-2m+4}=4m-1\)(Giải tương tự)
Vậy \(m=\frac{1-\sqrt{6}}{5}\) thỏa mãn đề.
\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)
\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)
\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)
\(\Leftrightarrow4m+1=2m+3+x_1\)
\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)
Mà \(x_1x_2=m^2+2m+2\)
\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)
\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
Ta có:
\(x^2-2\left(m+5\right)x+2m+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)
Thế vô làm nốt
a/ \(\Delta'=\left(m+2\right)^2-\left(3m+2\right)=m^2+m+2>0\) \(\forall m\)
Pt đã cho luôn có 2 nghiệm pb
Kết hợp Viet và đề bài ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\-2x_1+x_2=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x_1=2m+1\\x_2=2x_1+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m+1}{3}\\x_2=\frac{4m+11}{3}\end{matrix}\right.\)
Cũng theo Viet:
\(x_1x_2=3m+2\Leftrightarrow\left(\frac{2m+1}{3}\right)\left(\frac{4m+11}{3}\right)=3m+2\)
\(\Leftrightarrow8m^2+26m+11=27m+18\)
\(\Leftrightarrow8m^2-m-7=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{7}{8}\end{matrix}\right.\)
Câu 2:
\(2x^2+xy-y^2+3y-2=0\)
\(\Leftrightarrow2x^2+2xy-2x-xy-y^2+y+2x+2y-2=0\)
\(\Leftrightarrow2x\left(x+y-1\right)-y\left(x+y-1\right)+2\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1-x\\y=2x+2\end{matrix}\right.\)
Thay xuống dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2-\left(1-x\right)^2=3\\x^2-\left(2x+2\right)^2=3\end{matrix}\right.\)
Bạn tự hoàn thành đoạn cuối
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(mx^2+\left(2m-1\right)x+m-2=0\) (1)
a)
- Nếu m = 0 thì (1) ⇔ - x - 2 = 0 ⇔ x = -2
- Nếu m # 0 thì (1) là phương trình bậc 2
Ta có: △1 = (2m-1)2 - 4m(m-2) = 4m + 1
Để (1) có nghiệm ⇔ △1 ≥ 0 ⇔ 4m + 1 ≥ 0 ⇔ m ≥ \(-\dfrac{1}{4}\)
Vậy để phương trình có nghiệm thì m ≥ \(-\dfrac{1}{4}\)
b) Với m ≥ \(-\dfrac{1}{4}\) thì phương trình có nghiệm x1, x2 nên theo HT Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=\dfrac{m-2}{m}\end{matrix}\right.\)
Theo đầu bài:
x12 + x22 = 2018
⇔ (x1 + x2)2 - 2x1x2 = 2018
⇔ \(\left(\dfrac{1-2m}{m}\right)^2-2.\dfrac{m-2}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1}{m^2}-\dfrac{2m-4}{m}=2018\)
⇔ \(\dfrac{4m^2-4m+1-m\left(2m-4\right)}{m^2}=2018\)
⇔ \(\dfrac{4m^2-4m+1-2m^2+4m}{m^2}=2018\)
⇔ 2m2 + 1 = 2018m2
⇔ 2016m2 = 1
⇔ m2 = \(\dfrac{1}{2016}\)
⇔ \(\left[{}\begin{matrix}m=\sqrt{\dfrac{1}{2016}}\left(TM\right)\\m=-\sqrt{\dfrac{1}{2016}}\left(TM\right)\end{matrix}\right.\) ...
Vậy m ∈ \(\left\{\pm\sqrt{\dfrac{1}{2016}}\right\}\)