Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$
Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)
Khi đó:
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)
$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$
$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$
\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)
\(\Rightarrow m=-3\) (thỏa mãn)
Vậy........
Bài 1:
Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)
Khi đó:
\(|x_1^3-x_2^3|=10\sqrt{2}\)
\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)
\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)
Vậy........
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
\(\Delta\) = 52 - 4(m - 2) = 25 - 4m + 8 = 33 - 4m
phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\) \(\Delta\) > 0 \(\Leftrightarrow\) 33 - 4m > 0 \(\Leftrightarrow\) - 4m > - 33 \(\Leftrightarrow\) m < \(\dfrac{33}{4}\)
phương trình có 2 nghiệm dương \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5>0\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) m > 2
ta có : \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)\) = 3 \(\Leftrightarrow\) \(2\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1.x_2}}\right)\) = 3
\(\Leftrightarrow\) \(\dfrac{2\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\sqrt{x_1.x_2}}\) = 3 \(\Leftrightarrow\) \(2\left(\sqrt{x_1}+\sqrt{x_2}\right)\) = \(3\sqrt{x_1.x_2}\)
\(\Leftrightarrow\) \(2\sqrt{x_1}\) + \(2\sqrt{x_2}\) = \(3\sqrt{x_1.x_2}\) \(\Leftrightarrow\) \(\left(2\sqrt{x_1}+2\sqrt{x_2}\right)^2\) = \(\left(3\sqrt{x_1.x_2}\right)^2\)
\(\Leftrightarrow\) 4x1 + 8\(\sqrt{x_1.x_2}\) + 4x2 = 9x1.x2 \(\Leftrightarrow\) 4(x1 + x2) + 8\(\sqrt{x_1.x_2}\) = 9x1.x2
áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1.x_2=m-2\end{matrix}\right.\)
thay vào ta có : 20 + 8\(\sqrt{m-2}\) = 9(m-2)
\(\Leftrightarrow\) 20 + 8\(\sqrt{m-2}\) = 9m - 18 \(\Leftrightarrow\) 9m - 38 = 8\(\sqrt{m-2}\)
\(\Leftrightarrow\) (9m - 38)2 = 64 (m - 2) (vì m - 2 > 0)
\(\Leftrightarrow\) 81m2 - 684m + 1444 = 64m - 128
\(\Leftrightarrow\) 81m2 - 748m + 1572 = 0
giải phương trình ta được m = 6 ; m = \(\dfrac{262}{81}\) (đều thỏa mảng điều kiện)
vậy m = 6 ; m = \(\dfrac{262}{81}\) là thỏa mãng điều kiện bài toán