K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

a) ĐKXĐ: \(x\ne3\)

b) 

\(B=0\\ \Leftrightarrow\dfrac{x^2-9}{x^2-6x+9}=0\\ \Leftrightarrow x^2-9=0\\ \Leftrightarrow x^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(l\right)\\x=-3\left(n\right)\end{matrix}\right.\)

c) 

\(B=\dfrac{x^2-9}{x^2-6x+9}=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)

 

 

 

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Bài 1:

a) ĐKXĐ: \(9x^2-6x+1\neq 0\)

\(\Leftrightarrow (3x-1)^2\neq 0\Leftrightarrow x\neq \frac{1}{3}\)

b) Với \(x=-8\Rightarrow C=\frac{3(-8)^2-(-8)}{9(-8)^2-6(-8)+1}=\frac{8}{25}\)

c) Ta có:

\(C=\frac{3x^2-x}{9x^2-6x+1}=\frac{x(3x-1)}{(3x-1)^2}=\frac{x}{3x-1}\)

d)

Phân thức đã cho nhận giá trị âm \(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\3x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\3x-1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>\dfrac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x>0\\ x< \frac{1}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Bài 2:

a) ĐKXĐ: \((x+1)(2x-6)\neq 0\)

\(\Leftrightarrow \left\{\begin{matrix} x+1\neq 0\\ 2x-6\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -1\\ x\neq 3\end{matrix}\right.\)

b) Ta có:

\(\frac{3x^2+3x}{(x+1)(2x-6)}=1\)

\(\Leftrightarrow \frac{3x(x+1)}{(x+1)(2x-6)}=1\)

\(\Leftrightarrow \frac{3x}{2x-6}=1\Leftrightarrow 3x=2x-6\Leftrightarrow x=-6\)

c) Để phân thức đã cho nhận giá trị dương thì:

\(\frac{3x}{2x-6}>0\Leftrightarrow \frac{x}{x-3}>0\)

\(\Leftrightarrow \)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)

Vậy để pt nhận giá trị dương thì \(x\neq -1; x\neq 3\) và \(x>3\) hoặc \(x<0\)

21 tháng 2 2020

a)Thay m=-1 vào phương trình ta đc:

\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)

\(\Leftrightarrow4x-4x+3=3\)

\(\Leftrightarrow0x=0\)(Luôn đúng)

\(\Leftrightarrow\)Pt có vô số nghiệm

Vậy pt có vô số nghiệm.

b)Thay x=2 vào phương trình ta  có:

\(4m^2.2-4.2-3m=3\)

\(\Leftrightarrow8m^2-8-3m=3\)

\(\Leftrightarrow8m^2-3m-11=0\)

\(\Leftrightarrow8m^2+8m-11m-11=0\)

\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)

Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}

c)Ta có:

\(5x-\left(3x-2\right)=6\)

\(\Leftrightarrow5x-3x+2=6\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)

Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)

\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)

Thay x=2 vào pt trên ta đc:

\(4m^2.2-4.2-3m=3\)(Giống câu b)

Vậy m=-1,m=11/8...

d)Có:\(4m^2x-4x-3m=3\)

\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)

Để pt vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt vô nghiệm.

10 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\x\ne0\end{cases}}\)

a) \(B=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)

\(\Leftrightarrow B=\left(\frac{3-x}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(\Leftrightarrow B=\frac{\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{3x^2}\)

\(\Leftrightarrow B=-\frac{x+3}{3x^2}\)

b) Khi \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow B=-\frac{1+3}{3.1^2}=-\frac{4}{3.}\)

c) Để B > 0

\(\Leftrightarrow-\frac{x+3}{3x^2}>0\)

\(\Leftrightarrow\frac{x+3}{3x^2}< 0\)

\(\Leftrightarrow x+3< 0\) (Do 3x2 > 0; loại giá trị = 0)

\(\Leftrightarrow x< -3\)

Vậy để \(B>0\Leftrightarrow x< -3\)

14 tháng 7 2018

B1:

\(a,A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x^2-9\right)}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\left(\frac{\left(3-x\right)\left(x+3\right)}{x^2-9}+\frac{x\left(x-3\right)}{x^2-9}\right).\frac{x+3}{3x^2}\)

\(=\frac{3x+9-x^2-3x+x^2-3x}{x^2-9}.\frac{x+3}{3x^2}\)

\(=\frac{9-3x}{x^2-9}.\frac{x+3}{3x^2}\)

\(=\frac{3\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)3x^2}\)

\(=\frac{3-x}{x^3-3x^2}\)

14 tháng 7 2018

B2: 

\(a,B=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2}{x-2}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x+2}{x^2-4}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\frac{x-2x-4+x-2}{x^2-4}\right):\frac{6}{x+2}\)

\(=-\frac{6}{x^2-4}.\frac{x+2}{6}\)

\(=\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)6}=-\frac{1}{x-2}\)