Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Cauchy-Schwarz ta có:
\(\left(1+9\right)\left(x^2+y^2\right)\ge\left(x+3y\right)^2\ge1\)
\(10\left(x^2+y^2\right)\ge1\Leftrightarrow A\ge\frac{1}{10}\)
Tự tìm dấu "="
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
x2 - 2(k - 1)x + k - 3 = 0 (1)
△' = b'2 - ac = [-(k-1)]2 - (k-3) = k2 - 2k + 1 - k + 3 = k2 - 3k + 3
= (k-\(\frac{3}{2}\))2 + \(\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy pt (1) luôn có hai nghiệm x1;x2 phân biệt với ∀ m
Áp dụng Viet, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\left(1'\right)\\x_1\cdot x_2=k-3\left(2'\right)\end{matrix}\right.\)
Thay x1=\(\frac{5}{3}\)x2 vào (1') ta có \(\frac{5}{3}x_2+x_2=2\left(k-1\right)\Leftrightarrow\frac{8}{3}x_2=2\left(k-1\right)\Leftrightarrow x_2=\frac{2\left(k-1\right)}{\frac{8}{3}}=\frac{3}{4}\left(k-1\right)\)
⇒x1 = \(\frac{5}{3}x_2=\frac{5}{3}\cdot\frac{3}{4}\left(k-1\right)=\frac{5}{4}\left(k-1\right)\)
Thay x1;x2 vào (2') ta có
\(\frac{5}{4}\left(k-1\right)\cdot\frac{3}{4}\left(k-1\right)=k-3\Leftrightarrow\frac{15}{16}\left(k-1\right)^2=k-3\)
\(\Leftrightarrow\frac{15}{16}k^2-\frac{15}{8}k+\frac{15}{16}=k-3\Leftrightarrow\frac{15}{16}k^2-\frac{23}{8}k+\frac{63}{16}=0\)
△'=\(\left(\frac{-23}{16}\right)^2-\frac{15}{16}\cdot\frac{63}{16}=\frac{-13}{8}< 0\)
Vậy ko có giá trị nào của k thỏa mãn để pt (1) có hai nghiệm x1,x2 thỏa mãn x1=\(\frac{5}{3}x_2\)
\(\Delta'=\left(k-1\right)^2-k+3=k^2-3k+4=\left(k-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
Phương trình luôn có 2 nghiệm pb
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\x_1x_2=k-3\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\x_1=\frac{5}{3}x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{3}x_2+x_2=2\left(k-1\right)\\x_1=\frac{5}{3}x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{3}{4}\left(k-1\right)\\x_1=\frac{5}{4}\left(k-1\right)\end{matrix}\right.\)
Mà \(x_1x_2=k-3\Leftrightarrow\frac{15}{16}\left(k-1\right)^2=k-3\)
\(\Leftrightarrow15k^2-30k+15=16k-48\)
\(\Leftrightarrow15k^2-46k+63=0\) (vô nghiệm)
Vậy ko có k thỏa mãn