K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

a, thay m = 3 vào pt , ta đc

x2 - 2x + 3 = 0

\(\Leftrightarrow\left(x-1\right)^2+2=0\)

Mà (x-1)2 + 2 > 0 \(\forall x\)

=> pt vô nghiệm

b, \(\Delta^'=1-m\)

pt vô nghiệm khi \(\Delta^'< 0=>m>1\)

c, pt có 2 nghiệm pb \(\Leftrightarrow\)\(\Delta^'>0\)=> 1 - m>0 => m < 1

#mã mã#

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

21 tháng 4 2020

 giải thích vì sao

21 tháng 4 2020

m khác 2 nha bn

Học tốt

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

26 tháng 5 2019

a)  Ta có:

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\)

Mà \(\left(m-4\right)^2\ge0\Leftrightarrow\Delta\ge0\)với mọi m

Vậy phương trình luôn có nghiệm với mọi m

26 tháng 5 2019

b) Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1.x_2=2m-4\end{cases}}\)

Ta có: \(A=\frac{x_1.x_2}{x_1+x_2}=\frac{2m-4}{-m}=\frac{2m}{-m}-\frac{4}{-m}=-2+\frac{4}{m}\)

Để A đạt giá trị nguyên thì 4/m đạt giá trị nguyên <=> m là ước của 4

Mà m nguyên dương nên m = 1; 2; 4

Vậy m = 1; 2; 4

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

10 tháng 5 2018

a) \(\Delta\)= b2-4ac=\([-2\left(m-1\right)\)2-4.1.(m-3)

                           =4(m2-2m+1)-4m+12

                                =4m2-12m+16=(2m-3)2+7>0

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b)Vì pt luôn có 2 nghiệm phân biệt với m

Theo vi ét ta có:x1+x2=\(\frac{-b}{a}\)= 2m-2=S (1)

                     x1.x2=\(\frac{c}{a}\)=m-3=P (2)

Từ(1)\(\Rightarrow2m=S+2\)

          \(\Rightarrow m=\frac{S+2}{2}\left(3\right)\)

Từ(2)\(\Rightarrow m=P-3\left(4\right)\)

Từ (3) và(4)\(\Rightarrow\frac{S+2}{2}=P-3\)

               \(\Leftrightarrow S+2-2P+6=0\)

               \(\Leftrightarrow S-P+8=0\)

Do đó\(\Leftrightarrow\left(x_1+x_2\right)-\left(x._1.x_2\right)+8=0\left(đfcm\right)\)