Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+\left(m^2+1\right)x+m=2\)
\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =))
b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)
Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )
Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)
\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)
Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)
Tự lm nốt vì I chưa thuộc hđt mà lm )):
a,\(x^2+\left(m^2+1\right)x+m=2\)
\(< =>x^2+\left(m^2+1\right)x+m-2=0\)
Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)
b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)
\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)
\(< =>4m-8< m^4+1\)
\(< =>4m-9< m^4\)
\(< =>m>\sqrt[4]{4m-9}\)
Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)
\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)
\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)
đến đây dễ rồi ha
\(x^2+3x+m-3=0\)
Ta có \(\Delta=b^2-4ac\)
\(=3^2-4.1.\left(m-3\right)\)
\(=9-4m+12\)
\(=21-4m\)
Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)
\(\Leftrightarrow x\le\frac{21}{4}\)
Áp dụng vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)
Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)
\(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)
\(\Leftrightarrow9-7m+21=0\)
\(\Leftrightarrow30-7m=0\)
\(\Leftrightarrow7m=30\)
\(\Leftrightarrow m=\frac{30}{7}\) (TM)
Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
\(\Delta=25-4\left(m+4\right)=9-4m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)
a/ \(\Delta>0\Rightarrow m< \frac{9}{4}\)
\(x_1^2+x_2^2=23\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)
\(\Leftrightarrow25-2\left(m+4\right)=23\Rightarrow m+4=1\Rightarrow x=-3\) (t/m)
b/ \(\Delta\ge0\Rightarrow m\le\frac{9}{4}\)
Để pt có nghiệm khác 0 thì \(m\ne-4\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-3\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)
\(\Leftrightarrow\frac{25-2\left(m+4\right)}{m+4}=-3\)
\(\Leftrightarrow-m-4=25\Rightarrow m=-29\) (t/m)
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{b}{a}\) = \(\frac{3}{2}\) Và x1.x2 = \(\frac{c}{a}=\frac{1}{2}\)
a) \(\) \(\frac{1}{\text{x1}}+\frac{1}{x2}=\frac{x1+x2}{x1.x2}=\frac{\frac{3}{2}}{\frac{1}{2}}=\frac{3}{1}=3\)
b)\(\frac{1-x1}{x1}+\frac{1-x2}{x2}=\frac{\left(1-x1\right)x2+\left(1-x2\right)x1}{x1.x2}=\frac{x2-x1.x2+x1-x1.x2}{x1.x2}=\frac{\left(x1+x2\right)-2x1.x2}{x1.x2}=\frac{\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1\)
c) \(\frac{x1}{x2+1}+\frac{x2}{x1+1}=\frac{x1^2+x1+x2^2+x2}{x1.x2+x1+x2+1}=\frac{\left(x1^2+2x1.x2+x2^2\right)+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\left(x1+x2\right)^2+\left(x1+x2\right)-2x1.x2}{x1.x2+\left(x1+x2\right)+1}=\frac{\frac{3^2}{2^2}+\frac{3}{2}-\frac{2.1}{2}}{\frac{1}{2}+\frac{3}{2}+1}=\frac{11}{12}\)