Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt \(2x^2-\left(m+3\right)x+m=0\) có \(\Delta=\left(-m-3\right)^2-4.2m=m^2-2m+9=\left(m-1\right)^2+8>0\)
nên pt có 2 nghiệm phân biệt x1, x2 với mọi m
Ta có : \(P=\left|x_1-x_2\right|\)\(\Leftrightarrow\)\(P^2=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}\\x_1x_2=\frac{m}{2}\end{cases}}\)
\(\Rightarrow\)\(P^2=\left(\frac{m+3}{2}\right)^2-4.\frac{m}{2}=\frac{m^2-2m+9}{4}=\frac{\left(m-1\right)^2+8}{4}\ge\frac{8}{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
...
à quên, \(P^2\ge2\)\(\Leftrightarrow\)\(P\ge\sqrt{2}\) nhé
Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = a\\ {x_1}{x_2} = - 2 \end{array} \right.\)
Theo đề bài, ta có:
\(\begin{array}{l} x_1^2 + \left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) + x_2^2\\ = {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right)\\ = {a^2} + 2 + 2a\\ = {\left( {a + 1} \right)^2} + 1 \ge 0 \end{array}\)
Vậy GTNN bằng 1 \(\Leftrightarrow a=-1\)
Ta có:
\(x^2-2\left(m+5\right)x+2m+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)
Thế vô làm nốt
có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)
\(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)
\(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)
a) Ta có : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)
Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)
b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)
\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)
c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)
Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )
Vậy minA = -9 tại m = -4
Cái náy mình đã tìm ra kết quả nên hiển nhiên sẽ k tick được
Để phương trình có 2 nghiệm phân biệt thì Δ>0
=> \(\left(2m+3\right)^2-4m>0\\ < =>4m^2-12m+9>0\\ \Leftrightarrow x< \dfrac{4-\sqrt{7}}{2};\dfrac{4+\sqrt{7}}{2}< 0\\ \)