K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

19 tháng 6 2017

1) \(\Delta\)' = \(m^2-m+6\) = \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\forall m\)

\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)

ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=15\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay ta có : \(4m^2-2m+12=15\) \(\Leftrightarrow\) \(4m^2-2m-3=0\)

giải phương trình ta có : \(\left\{{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{4}\\m=\dfrac{1-\sqrt{13}}{4}\end{matrix}\right.\)

vậy : \(m=\dfrac{1+\sqrt{13}}{4};m=\dfrac{1-\sqrt{13}}{4}\) là thỏa mãng đk bài toán

19 tháng 6 2017

2) ta có : \(\left|x_1-x_2\right|=\sqrt{20}\) \(\Leftrightarrow\) \(\left(x_1-x_2\right)^2=20\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=20\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-6\end{matrix}\right.\)

thay vào ta có : \(4m^2-4m+24=20\) \(\Leftrightarrow\) \(4m^2-4m+4=0\) (vô nghiệm)

\(\Rightarrow\) không có \(x\) thỏa mãng

6 tháng 4 2019

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)

Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                                                                           \(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)

       \(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)

Khi đó y1 ; y2 là nghiệm của pt

\(Y^2-SY+P=0\) 

\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)

18 tháng 6 2015

a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)

=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)

b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4

 \(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)

ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Áp dụng định lý Viete cho pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=1\end{matrix}\right.\)

Khi đó:

\(A=x_1\sqrt{x_1}+x_2\sqrt{x_2}=(\sqrt{x_1})^3+(\sqrt{x_2})^3\)

\(=(\sqrt{x_1}+\sqrt{x_2})(x_1-\sqrt{x_1x_2}+x_2)\)

\(=\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}(x_1+x_2-\sqrt{x_1x_2})\)

\(=\sqrt{3+2}(3-1)=2\sqrt{5}\)

25 tháng 5 2018

∆=9-4=5

x1=(3+√5)/2; x2=(3-√5)/2

4x1=(√5+1)^2; 4x2=(√5-1)^2

4.A=(3+√5)(√5+1)+(3-√5)(√5-1)

=(4√5+3+5)+(4√5-3-5)=8√5

A=2√5

18 tháng 6 2015

bài 1: pt (2) hình như có vấn đề

b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)

=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6 

bài 2: ĐK: x >0 và x khác 1

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)

b)  ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min

c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)

để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)

\(\sqrt{x}-1\)1-12-2
x4(t/m)0(k t/m)9(t/m)PTVN

 

=> x thuộc (4;9)

bìa 3: câu này bạn đăng riêng mình làm rồi đó