Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để A là phân số=> n-1 khác 0 => n khác 1
b, Để A là số nguyên => 5 chia hết cho n-1
=> n-1 thuộc vào Ước của 5
Mà Ước của 5 là -1;-5;1;5
Lập Bảng
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n=-4;0;2;6
Theo đề bài ta có :
A = \(\frac{n=10}{2n-8}\)
=> 10n + 2 chia hết 2n - 8
=> 10n + 2 chia hết n - 4
=> n - 4 + 14 chia hết n - 4
=> 14 chia hết n - 4
Ta có n - 4 thuộc Ư( 14 ) = ( 1 ; 2 ; 7 ; 14 )
=> n thuộc ( 5 ; 7 ; 11 ; 18 )
Để \(\frac{n+10}{2n-8}\) có giá trị nguyên thì: n+10 chia hết cho 2n-8
=>2n+20 chia hết cho 2n-8
=>2n-8+28 chia hết cho 2n-8
=>14 chia hết cho n-4
=>n-4 thuộc Ư(14)={1;-1;2;-2;7;-7;14;-14}
=>n=5;3;6;2;11;-3;18;-10
Mà n là số tự nhiên nên: n=5;3;6;2;11;18
Câu a đề sai nha bạn
Câu b:
Gọi d=UCLN(21n+4;14n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(42n+8;42n+9)=1
Vậy: 21n+4/14n+3 là phân số tối giản
x-2/x+3 nguyên <=>x-2 chia hết cho x+3
<=>(x+3)-5 chia hết cho x+3
Mà x+3 chia hết cho x+3
=>5 chia hết cho x+3
=> x+3 E Ư(5)
=>x+3 E {-5;-1;1;5}
=>x E {-8;-4;-2;2}
Vậy..............
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
tìm số nguyên x để A có giá trị là 1 số nguyên \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0\right)\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E Z
<=>4 chia hết cho \(\sqrt{x}-3\)
<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}
+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại vì \(\sqrt{x}\) >= 0)
+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)
+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)
+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)
+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)
+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)
Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)
Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z
\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
\(x\) | 16 | 4 | 25 | 1 | 49 | loại |
Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5
Để phân số n+3/2n-2 có giá trị nguyên thì:
n+3 chia hết cho 2n-2
=>2n+6 chia hết cho 2n-2
=>2n-2+8 chia hết cho 2n-2
=>8 chia hết cho 2n-2
=>2n-2 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
=>n=3/2;1/2;2;0;3;-1;5;-3
Mà n thuộc N nên: n=0;2;3;5
a) Để A có giá trị nguyên thì n + 1 chia hết cho n - 3
=> n - 3 + 4 chia hết cho n - 3
Mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4)
=> n - 3 thuộc {-4; -2; -1; 1; 2; 4}
=> n thuộc {-1; 1; 2; 4; 5; 7}
b) Để A có giá trị phân số thì n - 3 khác 0
=> n khác 3