\(\frac{n+19}{n+6}\left(n\in N\right)\)

A , tim gia tri cua n de ps co gia t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

A . n + 19 / n + 6 thuộc Z
=> n + 19 chia hết cho n + 6

Ta có n + 19 = n + 13 + 6

Vì n + 6 chia hết cho n + 6 => 13 chia hết cho n + 6

=> n + 6 thuộc Ư ( 13 )

Ư ( 13 ) = { 1 ; -1 ; 13 ; -13 }

TH1 ; n + 6 = 1 

n = 1 - 6

n = -5

TH2 : n + 6 = -1

n = -1 - 6

n = -7

TH3 : n + 6 = 13 

n = 13 - 6

n = 7

Th4 : n + 6 = -13

n = -13 - 6

n = -19

Vậy n thuộc { -5 ; - 7 ; 7 ; -19 }

Phần b mk chịu !!

30 tháng 6 2017

chịu

20 tháng 4 2018

b, n1n2

Ta có: \(\dfrac{n-1}{n-2}\)= \(\dfrac{n-2+3}{n-2}=\dfrac{n-2}{n-2}+\dfrac{3}{n-2}=1+\dfrac{3}{n-2}\)

Để (n-1) chia hết (n-2) thì 3 chia hết cho (n-2)

Hay (n-2) thuộc Ư(3)

Ta có : Ư(3)=\(\left\{-3;-1;1;3\right\}\)

TH1: n-2 = -3 \(\Rightarrow n=-1\)

TH2: n-2= -1 \(\Rightarrow n=1\)

TH3: n-2 = 1\(\Rightarrow n=3\)

TH4: n- 2 = 3\(\Rightarrow n=5\)

Vậy n\(\in\left\{-1;1;3;5\right\}\)thì \(\dfrac{n-1}{n-2}\)

25 tháng 5 2017

Để \(\dfrac{8n+193}{4n+3}\)có giá trị là số tự nhiên thì :

8n+193 chia hết cho 4n+3

hay 2(4n+3)+187 chia hết cho 4n+3

Vì 2(4n+3) chia hết cho 4n+3

=> 187 chia hết cho 4n+3

=> 4n+3 thuộc Ư(187)

ta có bảng:

4n+3 1 187 11 17
n -1/2 46 2 7/2

Mà n là STN nên n =46 hoặc n=2

16 tháng 5 2017

a)Để B=\(\dfrac{7n-8}{2n-3}\)

Thì 7n-8 chia hết cho 2n-3

\(\Rightarrow\)7n-3-5 chia hết 2n-3

\(\Rightarrow\)5 chia hết 2n-3

Giá trị lớn nhất của n khi 2n-3\(\in\)

Ư(5)và là Ư lớn nhất

\(\Rightarrow\)n=(5+3):2=4

b) cũng tương tự nha bạn

15 tháng 2 2016

3.a) tổng các cs của tử là 3 nên chia hết cho 3

b) tổng các cs của rử là 9 nên chia hết cho 9

15 tháng 2 2016

ủng hộ mình nha

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2