Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu p, q, r là 3 số nguyên tố >5 thì p mũ 2+q mũ 2+ r mũ 2 là hợp số
Mik đang cần gấp
#)Giải :
Vì p là số nguyên tố ≥ 5 nên p có dạng 6m + 1 hoặc 6m - 1 \(\left(m\in N;m\ge1\right)\)
\(\Rightarrow p^2=6n+1\left(n\in N;n\ge0\right)\)
Tương tự, ta cũng có :
\(\hept{\begin{cases}q^2=6k+1\left(k\in N;k\ge1\right)\\r^2=6t+1\left(t\in N;t\ge1\right)\end{cases}}\)
\(\Rightarrow p^2+q^2+r^2=6a+3\left(a\in N;a\ge1\right)\)
\(\Rightarrowđpcm\)
Lời giải:
Nếu $p,q,r$ đều không chia hết cho 3. Ta biết rằng 1 scp khi chia 3 chỉ có dư $0$ hoặc $1$.
$\Rightarrow p^2,q^2,r^2$ chia $3$ dư $1$
$\Rightarrow p^2+q^2+r^2$ chia $3$ dư $3$ (hay chia 3 dư 0)
$\Rightarrow p^2+q^2+r^2\vdots 3$
Mà $p^2+q^2+r^2>3$ nên không thể là số nguyên tố (trái với yêu cầu đề bài)
Do vậy tồn tại ít nhất 1 số chia hết cho 3 trong 3 số $p,q,r$. Không mất tính tổng quát, giả sử $p\vdots 3\Rightarrow p=3$.
Vì $p,q,r$ là số nguyên tố liên tiếp nên có thể xảy ra các TH: $(q,r)=(2,5)$ hoặc $(q,r)=(5,7)$
Thử thì thấy $(q,r)=(5,7)$
Vậy $(p,q,r)=(3,5,7)$ và hoán vị.