\(p=n^4-27n^2+121\). Tìm n\(\inℕ^∗\)để p là số nguyên tố....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

đề triệu sơn

16 tháng 4 2018

Hiện câu 1 mih chưa giải đc

Đây là đ.a câu 2

\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)

Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)

Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)

Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)

Nhân vế với vế của (1);(2);(3) lại ta được :

\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)

\(\Leftrightarrow abc\ge35.57=1995\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)

n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2​  = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1] 

Vì n là số tự nhiên nên xét các trường hợp

-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại

-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn

-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại

                  Vậy n = 1 để n4 + 4 là số nguyên tố.

n4 + 4 = (n2)2 + 4.n2 + 4 - 4.n2​  = (n2 + 2)2 - (2n)2 = (n2 + 2 - 2n) . (n2 +2 + 2n) = [(n -1)2 + 1] . [(n + 1)2 +1] 

Vì n là số tự nhiên nên xét các trường hợp

-Nếu n = 0 thì n4 + 4 = [(0 - 1)2 + 1] . [(0 + 1)2 + 1] = 2 . 2 = 22 là hợp số, loại

-Nếu n = 1 thì n4 + 4 = [(1 - 1)2 + 1] . [(1 + 1)2 +1] = 1 . 5 = 5 là số nguyên tố, chọn

-Nếu n > 1 thì n4 + 4 là tích của hai số lớn hơn 1 là [(n -1)2 + 1] và [(n + 1)2 +1] . Tích của hai số lớn hơn 1 luôn là hợp số, loại

                  Vậy n = 1 để n4 + 4 là số nguyên tố.

6 tháng 11 2019

Tôi vẫn chưa nghĩ ra và cũng đang dặt câu hỏi đây

7 tháng 12 2017

Ta có:\(m^4+4=m^4+4m^2+4-4m^2=\left(m^2+2\right)^2-4m^2=\left(m^2-2m+2\right)\left(m^2+2m+2\right)\)

Để \(m^4+4\) là số nguyên tố thì ta có 2 trường hợp xảy ra:

TH1:\(\hept{\begin{cases}m^2-2m+2=1\\m^2+2m+2=m^4+4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2\right)=-1\\m\left(-m^3+m+2\right)=2\end{cases}}\).Từ hai pt trên ta có thể suy ra:m=1 thỏa mãn

TH2:\(\hept{\begin{cases}m^2-2m+2=m^4+4\\m^2+2m+2=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m\left(m-2-m^3\right)=2\\m\left(m+2\right)=-1\end{cases}}\).Tương tự TH1 ta cũng có:m=-1 thỏa mãn

Thay vào \(A=m^4+m^2+1\) ta thấy x=1 và x=-1 đều thỏa mãn

Vậy x\(\in\left\{-1,1\right\}\) thỏa mãn bài toán

7 tháng 12 2017

Cho mình thêm đoạn cuối với,mình đọc thiếu đề.Bạn thêm cho mình:

  Vì \(m\in N\) nên \(m=1\) thỏa mãn

Vậy chỉ có m=1 thỏa mãn bài toán