\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\), trong đó  a, b, c, d là hằng số.

Gia s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Đặt Q(x)=P(x)-10x. Khi đó Q(1)=Q(2)=Q(3)=0

Vì vậy Q(x) chia hết cho (x-1)(x-2)(x-3). Q(x) là đa thức bậc 4 (do P(x) là đa thức bậc 4) nên Q(x)=(x-1)(x-2)(x-3)(x-r) và 

P(x)=(x-1)(x-2)(x-3)(x-r)+10x

P(12)=1200-990r

P(-8)=7840+990r

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}=1984\)

5 tháng 6 2017

Ta có:      \(P\left(1\right)=1+a+b+c+d=10\)
                \(P\left(2\right)=16+8a+4b+2c+d=20\)
                \(P\left(3\right)=81+27a+9b+3c+d=30\)
    và        \(P\left(12\right)=20736+1728a+144b+12c+d\)
                 \(P\left(-8\right)=4096-512a+64b-8c+d\)
suy ra   \(P\left(12\right)+P\left(-8\right)=24832+1216a+208b+4c+2d\)

Ta lại có:               \(100.P\left(1\right)-198.P\left(2\right)+100.P\left(3\right)\)     \(=100\left(1+a+b+c+d\right)-198\left(16+8a+4b+2c+d\right)+100\left(81+27a+9b+3c+d\right)\)
\(=100+100a+100b+100c+100d-3168-1584a-792b-396c-198d+8100+2700a+900b+300c+100d\)
\(=5032+1216a+208b+4c+2d\)

Mặt khác:                      \(100.P\left(1\right)-198.P\left(2\right)+100.P\left(3\right)\)
    \(=100\times10-198\times20+100\times30=40\)

Do đó:          \(5032+1216a+208b+4c+2d=40\)
       \(\Rightarrow\)\(1216a+208b+4c+2d=40-5032=-4992\)

Thế  \(1216a+208b+4c+2d=-4992\)  vào \(P\left(12\right)+P\left(-8\right)=24832+1216a+208b+4c+2d\)
ta được:    \(P\left(12\right)+P\left(-8\right)=24832-4992=19840\)

Vậy  \(\frac{P\left(12\right)+P\left(-8\right)}{10}=\frac{19840}{10}=1984\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

NV
11 tháng 4 2019

\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)

Đặt \(Q\left(x\right)=P\left(x\right)-10x\) \(\Rightarrow\left\{{}\begin{matrix}Q\left(1\right)=P\left(1\right)-10.1=10-10=0\\Q\left(2\right)=P\left(2\right)-10.2=20-20=0\\Q\left(3\right)=P\left(3\right)-10.3=30-30=0\end{matrix}\right.\)

\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;3\right\}\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)

\(Q\left(x\right)=P\left(x\right)-10x\Rightarrow P\left(x\right)=Q\left(x\right)+10x\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)

\(P\left(12\right)=990\left(12-a\right)+120=12000-990a\)

\(P\left(-8\right)=-990\left(-8-a\right)-80=990a+7840\)

\(\Rightarrow\frac{P\left(12\right)+P\left(-8\right)}{10}=\frac{12000-990a+990a+7840}{10}=1984\)

26 tháng 6 2018

Bài 1 và Bài 2 dễ, bn có thể tự làm được!

Bài 3:

a) ta có: 1020 = (102)10 = 10010

=> 10010>910

=> 1020>910

b) ta có: (-5)30 = 530 =( 53)10 = 12510 ( vì là lũy thừa bậc chẵn)

(-3)50 = 350 = (35)10= 24310

=> 12510 < 24310

=> (-5)30 < (-3)50

c) ta có: 648 = (26)8= 248

1612 = ( 24)12 = 248

=> 648 = 1612

d) ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)

\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)

\(\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

26 tháng 6 2018

3.a) Ta có: 910=(32)10=320

Mà 1020<320

Nên 1020<910

c)Ta có:648 =(82)8=816

1612=(23)12=836

vì 816<836

Nên 648<162

              

27 tháng 4 2017

9087

15 tháng 1 2020

Mình sửa lại đề chút dấu = thay bằng từ và ở dòng 1

23 tháng 7 2021

câu a;b: bạn áp dụng công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n+a}-\frac{1}{n}\left(a\inℕ^∗\right)\)

17 tháng 3 2019

Ta có : f(x) = ax3 + 4x(x2-x) - 4x + 8

= ax3 + 4x3 - 4x2 - 4x + 11 - 3

= x3 (a + 4) - 4x(x + 1) + 11-3

f(x) = g (x) \(\Leftrightarrow\) x3 (a + 4) - 4x(x + 1) +11-3 = x3 - 4x(bx + 1) + c-3

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a+4=1\\x+1=bx+1\\c=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=-3\\b=1\\c=11\end{matrix}\right.\)

vậy a = -3 , b = 1 và c = 11

17 tháng 3 2019

f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11