Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\dfrac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
2: \(=\dfrac{x^2-2x+4}{x+2}-\left(x+2\right)\)
\(=\dfrac{x^2-2x+4-x^2-4x-4}{x+2}=\dfrac{-6x}{x+2}\)
3: \(=\dfrac{x^3+3x^2+x^2+3x-2x-6}{x^3+2x^2-x-2}\)
\(=\dfrac{\left(x+3\right)\left(x^2+x-2\right)}{\left(x+2\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}=\dfrac{x+3}{x+1}\)
bài 1)
a) \(\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}\)
= \(\dfrac{\left(2ax-2x\right)+\left(3ay-3y\right)}{\left(4ax+6x\right)+\left(6ay+9y\right)}\)
= \(\dfrac{2x\left(a-1\right)+3y\left(a-1\right)}{2x\left(2a+3\right)+3y\left(2a+3\right)}\)
= \(\dfrac{\left(2x+3y\right)\left(a-1\right)}{\left(2x+3y\right)\left(2a+3\right)}\)
= \(\dfrac{a-1}{2a+3}\)
Vậy biểu thức \(\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}\) ko phụ thuộc vào biến x,y mà phụ thuộc vào biến a
2: \(\left(\dfrac{7}{a+7}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right):\dfrac{a+1}{2}\)
\(=\dfrac{7a-49+a^2+49-7a-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}\)
\(=\dfrac{a^2-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}=\dfrac{2}{a+1}\)
3: \(=\dfrac{x^4-4x^2+4x^2}{x^2-4}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x^2-4\right)}\cdot\dfrac{x^2-4}{x-2}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x-2\right)}\right)\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x^2-4\right)+\left(2-3x\right)\left(x-4\right)}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-4x+2x-8-3x^2+12x}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-3x^2+10x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-x^2-2x^2+2x+8x-8}{x\left(x-2\right)\left(x-4\right)}\)
\(=\dfrac{x^3\left(x-1\right)\left(x^2-2x+8\right)}{\left(x-2\right)^2\cdot\left(x+2\right)\left(x-4\right)}\)
a) ta có : \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2=\dfrac{3x^5y^2}{2x^2y^2}+\dfrac{4x^3y^3}{2x^2y^2}-\dfrac{5x^2y^4}{2x^2y^2}\)
\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)
b) ta có : \(\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right):\dfrac{3}{5}ax^3\)
\(=\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right)\dfrac{5}{3ax^3}\)
\(=\dfrac{3}{5}.\dfrac{5}{3}\dfrac{a^6x^3}{ax^3}+\dfrac{3}{7}.\dfrac{5}{3}\dfrac{a^3x^4}{ax^3}-\dfrac{9}{10}.\dfrac{5}{3}\dfrac{ax^5}{ax^3}\)
\(=a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}a^2\)
\(P=\left(\dfrac{1}{ax-2}+\dfrac{1}{ax+2}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^2x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{ax+2+ax-2}{a^2x^2-4}+\dfrac{2ax}{a^2x^2+4}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{2ax\left(a^2x^2+4\right)+2ax\left(a^2x^2-4\right)}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\left(\dfrac{4a^3x^3}{a^4x^4-16}+\dfrac{4a^3x^3}{a^4x^4}\right)\cdot\dfrac{a^4x^4+16}{a^4x^4}\)
\(=\dfrac{8a^7x^7-64a^3x^3}{a^4x^4\left(a^4x^4-16\right)}\cdot\dfrac{a^4x^4+16}{a^4x^4}=\dfrac{\left(8a^7x^7-64a^3x^3\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}\)
\(=\dfrac{8a^3x^3\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^8x^8\left(a^4x^4-16\right)}=\dfrac{8\left(a^4x^4-8\right)\left(a^4x^4+16\right)}{a^5x^5\left(a^4x^4-16\right)}\)
thanks ✔