Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m( x2 - 4x + 3 ) + 2( x - 1 ) = 0
<=> mx2 - 4mx + 3m + 2x - 2 = 0
<=> mx2 - 2( 2m - 1 )x - 2 = 0
ĐKXĐ : m ≠ 0
Δ = b2 - 4ac = [ -2( 2m - 1 ) ]2 + 8
= 4( 2m - 1 )2 + 8
Dễ thấy Δ ≥ 8 > 0 ∀ m
hay pt luôn có nghiệm với mọi m ≠ 0 ( đpcm )
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
a= 1; b= - 2(m-1) ; b'= -m+1; c=2m-5
a)
Xét: Δ'=b'2 - ac = (-m+1)2-(2m-5)= m2-2m+1-2m+5=m2-4m+6=m2-4m+4+2=(m-2)2+2
Vì (m-2)2≥0 nên Δ'=(m-2)2+2>0. Suy ra PT luôn có nghiệm.
b) Theo hệ thức Viet ta có:
S=x1+x2=\(\dfrac{-b}{a}\)=2(m-1)
Theo đề ra tổng 2 nghiệm bằng 6 nên:
2(m-1)=6 ⇔m=4
Vậy với m=4 thì PT có tổng 2 nghiệm bằng 6.
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
a= 1; b'= -(m-1); c= m-3
a) Xét: Δ'=b'2-ac=[-(m-1)]2-(m-3) = m2-2m+1-m+3=m2-3m+4=m2-2.\(\dfrac{3}{2}\).m+\(\dfrac{9}{4}\)+ \(\dfrac{7}{4}\)=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)
Vì: (m-\(\dfrac{3}{2}\))2≥0, nên Δ'=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)>0 Nên Pt có 2 nghiệm phân biệt.
b) Theo Viet ta có:
S=...= 2(m-1) và P=..= m-3
Theo bài ra PT có 2 nghiệm đối nhau nên:
\(\left\{{}\begin{matrix}P=m-3< 0\\S=2\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m=1\end{matrix}\right.\Leftrightarrow m=1\)
Vậy với m=1 thì PT có 2 nghiệm đối nhau
Δ = b2 - 4ac = [ -( m - 1 ) ]2 + 12
= ( m - 1 )2 + 12 ≥ 12 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt ∀ m ( đpcm )