\(x^2-\left(5m-1\right)x+6m^2-2m=0\)0

x là ẩn số

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

\(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)

Vậy PT luôn có nghiệm với mọi m

13 tháng 2 2020

a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)

c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

\(\Rightarrow x^2_1+x^2_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)

Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)

29 tháng 4 2020

Xét \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0,\forall m\)

=> Phương trình luôn có nghiệm với mọi m.

20 tháng 5 2019

\(2x^2+2\left(2m-6\right)x-6m+52=0\)

\(\Delta=4\left(2m-6\right)^2+2.\left(6m-52\right)=4.\left(4m^2-2m+36\right)+12m-104=16m^2-8m+144+12m-104=16m^2+4m+40>0\)

Vậy pt luôn có nghiệm hữu tỉ

7 tháng 8 2017

Toán lớp mấy

7 tháng 8 2017

toán tuổi thơ chắc chỉ cần đáp số thôi nhỉ

1. S={7;-5}

2. HPT có 2 nghiệm (x;y) là (2;-3) và (3/2;-7/2)

3. a=b=0

4. Dễ rồi

Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)

Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)

\(=4m^2+12m+9-4m=4m^2+8m+9\)

\(=\left(2m+2\right)^2+5\)

Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)

\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)\(x_2\)

Theo hệ thức VI-ÉT ta có :

\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)

Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)

Thay \(\left(^∗\right)\)vào K ta được :

\(K=\left(2m+3\right)^2-2m\)

\(\Leftrightarrow K=4m^2+12m+9-2m\)

\(\Leftrightarrow K=4m^2+10m+9\)

\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

6 tháng 6 2018

\(x^2-mx+m-2=0\) (1)  (a=1;b=-m;c=m-2)

\(\Delta=b^2-4ac=m^2-4.\left(-m\right).\left(m-2\right)\)

\(=m^2+4m^2-8m\)

=5m2-8m

Đến đây đưa về hằng đẳng thức mà ra dấu (-) bn xem đề có sai ko

19 tháng 3 2020

\(x^2-\left(2m+1\right)x+m^2+m+1=0\)

2 nghiệm phân biệt khi

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m+1\right)=0\)

=>\(\Delta=4m^2+4m+1-4m^2-4m-4=0\)

=>\(\Delta=-3< 0\)

b)\(\orbr{\begin{cases}x_1=\frac{2m+1-3}{2}=\frac{2m+1}{2}-\frac{3}{2}\\x_2=\frac{2m+1+3}{2}=\frac{2m+1}{2}+\frac{3}{2}\end{cases}}\)

\(x_1-x_2=-3\)