Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
a; \(\Delta\)' = \([\) -(m+1)\(]\) 2-1.(m2+m-1)
\(\Leftrightarrow\) m2 + 2m +1- m2- m + 1 \(\Leftrightarrow\) m + 2
phương trình có 2 nghiệm \(\Leftrightarrow\Delta\) > 0
\(\Leftrightarrow\) m + 2 > 0 \(\Leftrightarrow\) m > -2
vậy m > -2 thì phương trình có 2 nghiệm
b; x1 + x2 = \(\dfrac{-b}{a}\) = 2.(m + 1) = 2m + 2 (1)
x1 . x2 = \(\dfrac{c}{a}\) = m2 + m - 1 (2)
x12 + x22 = (x1 + x2)2 - 2x1.x2 (3)
thay (1) ; (2) vào (3)
\(\Leftrightarrow\) (2m + 2)2 - 2.(m2 + m - 1)
= 4m2+ 8m + 4 - 2m2- 2m + 2 = 2m2 + 6m + 6
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)