\(x^2\) - mx + m - 2 = 0 (m là tham số). Tìm m để phương trình vó 2 ngh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2020

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Leftrightarrow\left(m-2\right)^2-2m^2+4\left(m-2\right)+4=4\left(m-2\right)-4m+4\)

\(\Leftrightarrow4-m^2=0\Rightarrow m=\pm2\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

8 tháng 3 2017

\(x^2m-2\left(m-1\right)x+m+1=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=4m+4\)

Để phương trình có 2 nghiệm phân biệt 

\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)

Theo định lý Viet 

\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\) 

 \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)

Xét phương trình ( 1 )

\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)

\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)

\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)

\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0

\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)

\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)

\(\Leftrightarrow14m^2+10m-4=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=324\)

\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)

Do  \(m>-1\)

\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)

24 tháng 5 2018

a) x= -2 , x= 0

24 tháng 5 2018

m=1 hacm=5

4 tháng 3 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

4 tháng 3 2022

?????

9 tháng 6 2019

Ta có \(\Delta^'=\left(m-1\right)^2-\left(m^2+1\right)=m^2-2m+1-m^2-1=-2m.\)

Để phương trình đã cho có 2 nghiệm \(x_1,x_2\)thì \(\Delta^'\ge0\Leftrightarrow-2m\ge0\Leftrightarrow m\le0\)

áp  dụng hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+1\end{cases}}\)

Dễ thấy \(x_1x_2=m^2+1\ge1\Rightarrow x_1,x_2\ne0\forall m\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)\(\Leftrightarrow\frac{x^2_1+x_2^2}{x_1x_2}=4\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2=4\Leftrightarrow\left(x_1+x_2\right)^2=6x_1x_2\)

\(\Leftrightarrow\left(2\left(m-1\right)\right)^2=6\left(m^2+1\right)\Leftrightarrow4m^2-8m+4=6m^2+6\)

\(\Leftrightarrow2m^2+8m+2=0\Leftrightarrow m^2+4m+4=3\Leftrightarrow\left(m+2\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=\sqrt{3}\\m+2=-\sqrt{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=\sqrt{3}-2\left(TMĐK\right)\\m=-\sqrt{3}-2\left(TMĐK\right)\end{cases}.}\)

Vậy..........

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2