Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
Theo hệ thức Viet : \(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m+1\\x_1+x_2=-\frac{b}{a}=6\end{cases}}\)
Khi đó : \(x_1^2\left(x_2+1\right)+x_2^2\left(x_1+1\right)>0\)
\(< =>x_1^2x_2+x_1^2+x_2^2x_1+x_2^2>0\)
\(< =>\left(x_1x_2\right)\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2>0\)
\(< =>6\left(2m+1\right)+6^2-2\left(2m+1\right)>0\)
\(< =>12m+6+36-4m-2>0\)
\(< =>8m+40>0\)\(< =>m>-\frac{40}{8}=-5\)
Vậy để m thỏa mãn đk trên thì \(m>-5\)
mình sửa đề trên là > 0 nhé
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)
Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)
\(=4m^2+12m+9-4m=4m^2+8m+9\)
\(=\left(2m+2\right)^2+5\)
Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)
\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)và\(x_2\)
Theo hệ thức VI-ÉT ta có :
\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)
Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)
Thay \(\left(^∗\right)\)vào K ta được :
\(K=\left(2m+3\right)^2-2m\)
\(\Leftrightarrow K=4m^2+12m+9-2m\)
\(\Leftrightarrow K=4m^2+10m+9\)
\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)
Có \(\Delta=\left(2m-1\right)^2-4\left(m+1\right)\)
\(=4m^2-4m+1-4m-4\)
\(=4m^2-8m-3\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\orbr{\begin{cases}m< \frac{2-\sqrt{7}}{2}\\m>\frac{2+\sqrt{7}}{2}\end{cases}}\)(1)
Theo Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=m+1\end{cases}}\)
Vì \(x_1>x_2>0\Rightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-2m>0\\m+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-1\end{cases}}\)
\(\Leftrightarrow-1< m< \frac{1}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-1< m< \frac{2-\sqrt{7}}{2}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-\left(-x\right)-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)