\(x^2-\left(2n-1\right)x+n\left(n-1\right)=0\). Gọi
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2020

\(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)\)

\(=4n^2-4n+1-4n^2+4n=1\)

Phương trình có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=\frac{2n-1-1}{2}=n-1\\x_2=\frac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\) (đpcm)

22 tháng 4 2020

Dùng hệ thức Vi-ét có được không bạn?

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

NV
3 tháng 10 2019

Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:

\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)

Tương tự: \(x_2^2+3x_2-2=8x_2-1\)

\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)

Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)

Thay vào:

\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)

\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)

\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)

Bạn tự thay số

3 tháng 10 2019

@Nguyễn Việt Lâm

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r