\(x^2-\left(2m+1\right)x+m^2+m=0\) (1), với m là tham số

a) giải...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

dễ thấy \(\Delta=1\Rightarrow\)pt luôn có 2 no pbiệt

\(x_1>x_2\)

\(\Rightarrow x_1=\dfrac{2m+1-\sqrt{\Delta}}{2}=m;x_2=\dfrac{2m+1+\sqrt{\Delta}}{2}=m+1\)

\(\Rightarrow x_1=x_2+1\)

với m thay đổi thì điểm a luôn di chuyển trên đths y=x+1 (y=x1;x=x2)

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r

20 tháng 6 2021

a) Ta có  : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)

b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)

\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)

c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)

Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )

Vậy minA = -9 tại m = -4