\(x^2-ax+1=0\) \(\left(a\inℤ\right)\) có 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))

nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))

\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))

Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)

Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)

Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)

\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)

Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\),  \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)

\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)

Tương tự với \(x_1\) và \(x_3\)\(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)

Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)

Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)

Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)

Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)

Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)

 

 

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

31 tháng 5 2021

Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra khi m = -1 

Vậy GTNN A là 4 khi m =-1 

13 tháng 5 2017

Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)

Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0