Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`
\(\hept{\begin{cases}x_1+x_2=2\\x_1.x_2=-5\end{cases}}\)
\(B=x_1^2+x_2^2=\left(x_2+x_2\right)^2-2x_1.x_2=2^2+2.5=14\)
Câu C phân tích tương tự
Cho phương trình: 5 x^2-2\sqrt{5}x+1 = 05x2−25x+1=0.
Điền số thích hợp vào ô trống:
Biệt thức \Delta=Δ=
×
.
Nghiệm x=x=
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)
\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)
3x2-5x-6=0
(a=3 ; b = -5 ; c=-6)
Vì a=3 trái dấu với c=-6 nên phương trình co1v 2 nghiệm phân biệt
S= x1+x2=\(\dfrac{-b}{a}\)=\(\dfrac{-\left(-5\right)}{3}\)=\(\dfrac{5}{3}\)
P= x1*x2=\(\dfrac{c}{a}\)=\(\dfrac{-6}{3}\)=-2
A=\(\dfrac{x_1}{x_2}\)-\(\dfrac{2}{x_1^2}\)
A=\(\dfrac{x_1^3\cdot x_2}{x_1^2\cdot x_2^2}-\dfrac{x_2^2+2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x_1^3\cdot x_2-x_2^2-2}{x_1^2\cdot x_2^2}\)
A=\(\dfrac{x^2_1-x^2_2-2}{x_1\cdot x_2}\)
A=\(\dfrac{\left(x_1+x_2\right)\cdot\left(x_1-x_2\right)-2}{x_1\cdot x_2}\)
A=\(\dfrac{S\cdot\sqrt{S2-4P}-2}{P}\)
(Giải thích thêm x1-x2 = \(\sqrt{S^2-4P}\) vì (x1-x2)^2=x1^2 - 2x1x2 + x2^2=(x1^2+x2^2) -2x1x2 = (S^2-2P)*2P=S^2-4P)
( Công thức x1^2+x2^2 = x1^2 + 2x1x2 + x2^2 -2x1x2 = (x1+x2)^2 - 2x1x2 = S^2 -2P)
Thế vào ta có :
A=\(\dfrac{\dfrac{5}{3}\cdot\sqrt{\left(\dfrac{5}{3}\right)^2-4\cdot\left(-2\right)}-2}{-2}\)
A= \(\dfrac{19-5\sqrt{97}}{18}\)
Vậy giá trị của biểu thức A=\(\dfrac{19-5\sqrt{97}}{18}\)
( chỗ tui không cần kết luận mà bài chỗ bác đẹp y như chỗ tui vậy )
\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0
=> Phương trình có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\) \(; x_1x_2 = -3\)
Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)
\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)
\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)
\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)
\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)
\(= \dfrac{-100}{3}\)
Đáp án B
Phương trình x 2 - 5 x + 2 = 0 có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có:
Pt: \(x^2-5x-4=0\)
Theo vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-5\right)}{1}=5\\x_1x_2=\dfrac{-4}{1}=-4\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=5^2-2\cdot\left(-4\right)\)
\(=33\)