Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Câu hỏi của Postgass D Ace - Toán lớp 9 - Học toán với OnlineMath
a) Phương trình (1) có nghiệm x=-2 khi:
(-2)2-(m+5).(-2)-m+6=0
<=> 4+2m+10-m+6=0
<=> m=-20
b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)
Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)
Với điều kiện trên, áp dụng định lý Vi-et ta có:
\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)
Khi đó:
\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)
<=> (-m+6)(m+5)=24
<=> m2-m-6=0
<=> m=3; m=-2
Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)
Vậy m=3 là giá trị cần tìm
2. \(A=\frac{x^2-2x+2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}=\left(\frac{2011}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2000}{2011}=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2000}{2011}\)
\(\Leftrightarrow A\ge\frac{2000}{2011}\Rightarrow MinA=\frac{2000}{2011}\Leftrightarrow\frac{\sqrt{2011}}{x}=\frac{1}{\sqrt{2011}}\Leftrightarrow x=2011\)
1) \(\Delta'=1^2-\left(m-1\right)=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Khi đó \(x_1=1+\sqrt{2-m};x_2=1-\sqrt{2-m}\)
TH1: \(2\left(1+\sqrt{2-m}\right)-\left(1-\sqrt{2-m}\right)=7\Leftrightarrow1+3\sqrt{2-m}=7\)
\(\Leftrightarrow\sqrt{2-m}=2\Leftrightarrow2-m=4\Rightarrow m=-2\left(tm\right)\)
TH2: \(2\left(1-\sqrt{2-m}\right)-\left(1+\sqrt{2-m}\right)=7\Leftrightarrow1-3\sqrt{2-m}=7\) (VÔ LÝ)
Vậy m = - 2.
2) \(P=\frac{x^4+3x^2+1}{x^2+1}=\frac{\left(x^4+2x^2+1\right)+\left(x^2+1\right)+2}{x^2+1}=\left(x^2+1\right)+\frac{2}{x^2+1}+1\)
Vì \(x^2+1\ge1\), áp dụng bđt Cô si ta có:
\(\left(x^2+1\right)+\frac{2}{x^2+1}\ge2\sqrt{\left(x^2+1\right).\frac{2}{x^2+1}}=2\sqrt{2}\)
Vậy \(P\ge2\sqrt{2}+1\)
Dấu bằng xảy ra khi
\(x^2+1=\frac{2}{x^2+1}\Leftrightarrow x^2+1=\sqrt{2}\Rightarrow x^2=\sqrt{2}-1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{2}-1}\\x=-\sqrt{\sqrt{2}-1}\end{cases}}\)
sửa đề, 2 nghiệm phân biệt nhé
Để pt có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=16-4\left(-m^2-5\right)=16+4m^2+20=4m^2+36>0\forall m\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=-m^2-5\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=16\Rightarrow x_1^2+x_2^2=16-2\left(-m^2-5\right)=2m^2+26\)
bình phương 2 hệ thức có dạng \(\left(x_1-x_2\right)^2=16\Rightarrow x_1^2+x_2^2-2x_1x_2=16\)
\(\Leftrightarrow2m^2+26-2\left(-m^2-5\right)=16\)
\(\Leftrightarrow4m^2+36=16\Leftrightarrow4m^2=-20\Leftrightarrow m^2=-5\)vô lí