Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất
\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4
TỪ GT TA CÓ X1=2X2 HOẶC X1=-2X2
VÌ HỆ SỐ a*c<0 MỌI m THỎA MÃN
THEO HỆ THỨC VIET X1+X2=3
XÉT TRƯỜNG HỢP X1=2X2 \(\Rightarrow X_2=1;X_1=2\Rightarrow-2m^2=2\Rightarrow\) KHÔNG CÓ m
cmtt VỚI X1=-2X2 m=-3;3
Làm được câu đầu P/s mới lớp 8 thôi
Ta có: \(x^2-4x+m+1=0\)
\(\Rightarrow\Delta'=3-m\)
a) Khi m = 2
\(x^2-4x+3=0\)
\(\Rightarrow\Delta=3-2=1\)
\(\Rightarrow x_1=2+1=3\)
\(\Rightarrow x_2=2-1=1\) Sai bỏ qa nha :"))))
Theo đl Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=16-\left(-3\right).4=28\)
\(\Rightarrow x_1-x_2=\pm\sqrt{28}=\pm2\sqrt{7}\)
\(\Rightarrow A=\left(x_1-x_2\right)\left(x_1+x_2\right)=\pm2\sqrt{7}.4=\pm8\sqrt{7}\)