\(x^2\) – 3x – 4 = 0

Trong các số - 1; 1; -4; 4, số nào là nghiệm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Thay x = -1 vào vế trái của phương trình, ta có:

\(\left(-1\right)^2\) – 3(-1) – 4 = 1 + 3 – 4 = 0

Vậy x = -1 là một nghiệm của phương trình

Tương tự: x = 4 cũng là nghiệm của phương trình

x = 1; x = -4 không phải là nghiệm của phương trình.

7 tháng 4 2018

\(x^2-3x-4=0\)

\(x^2-4x+x-4=0\)

\(x\left(x-4\right)+\left(x-4\right)=0\)

\(\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

Giaỉ bất phương trình: \(5-3x< \left(4+2x\right)-1\\ < =>5-3x< 4+2x-1\\ < =>-3x-2x< 4-1-5\\ < =>-5x< -2\\ =>x>\dfrac{-5}{-2}\\ < =>x>\dfrac{5}{2}\)

Vì: \(\dfrac{2}{3},\dfrac{2}{7},\dfrac{-4}{5}< \dfrac{5}{2}\)

=> Không có số nào là nghiệm của bất phương trình.

4 tháng 7 2017

Ta có :

\(5-3x< \left(4+2x\right)-1\Leftrightarrow x>\dfrac{2}{5}\)

Vậy chỉ có số \(\dfrac{2}{3}\) là nghiệm

1 tháng 5 2017

Lần lượt thay các giá trị trên vào các biểu thức ta được

a) Phương trình có 2 nghiệm là -1 và 3

b) Phương trình có nghiệm là 0,5

c) Phương trình có nghiệm là \(\dfrac{2}{3}\)

Các bạn ơi ! Giúp mik với.....B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1<...
Đọc tiếp

Các bạn ơi ! Giúp mik với.....

B1: Xác định m để phương trình sau có hai nghiệm , nghiệm này bằng hai lần nghiệm kia: \(^{x^2-2\left(m-2\right)x-4m=0}\)

B2: Tìm m để phương trình sau có nghiệm âm: \(\frac{1-x}{m-1}-\frac{x+1}{1+m}=\frac{2x+5}{1-m^2}\left(m\ne\pm1\right)\)

B3: Giải và biện luận phương trình: \(\frac{ax-1}{4}-\frac{2\left(x-a\right)}{3}=\frac{a+4}{6}\)

B4: Cho a,b,c là ba cạnh của một tam giác chứng minh rằng : \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
B5: Cho phương trình : \(\left(m^2-4\right)x+2=m\left(1\right)\)

       Với điều kiện nào của m thì phương trình (1) là một phương trình bậc nhất . Tìm nghiệm của phương trình trên với tham số là m.

 

Ai làm đúng thì mình tích cho nhé !!! Mik cân gấp các bạn nào có cách giải nào thì trả lời nhé !!!! Nghỉ Tết mà nhiều bài quá :)) :v 

0
4 tháng 3 2020

a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)

\(\Rightarrow a=7\)

b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow-x^3-7x^2+4x+4=0\)

\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)

+) 1 - x = 0 thì x = 1

+) \(x^2+8x+4=0\)

\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)

Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)