Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) Tự giải
b) xét denta, đặt điều kiện của m
xét viet x1+x2 vs x1.x2
từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11
thế viet vao giải, nhơ so sánh đk
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-1\end{matrix}\right.\)
Do \(x_1\) là nghiệm \(\Rightarrow x_1^2-3x_1-1=0\Rightarrow x_1^2=3x_1+1\)
\(\Rightarrow x_1^3=3x_1^2+x_1\)
\(P=3x_1^2+x_1+3x_2^2+x_2+1988\)
\(=3\left(x_1+x_2\right)^2-6x_1x_2+x_1+x_2+1988\)
\(=3.3^2-6.\left(-1\right)+3+1988=...\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
\(P=x_1^3+3x_2^2+x_2+1988\)
\(=x_1^3+x_2^2\left(x_1+x_2\right)+x_2+1988\)
\(=x_1^3+x_2^3+x_2\left(x_1x_2+1\right)+1988\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_2\left(x_1x_2+1\right)+1988\)
\(=3^3-3\cdot3\cdot\left(-1\right)+1988\)
=27+9+1988
=2024