Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
\(\Delta\) = (-m)2 - 4(m -1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0 với mọi m
=> Phương trình đã cho luôn có 2 nghiệm x1; x2.
theo hệ thức Vi - ét ta có:
x1 + x2 = m (1);
x1x2 = m - 1 (2)
Đề bài cho x1 - 2x2 = 1 (3)
Trừ từng vế của (1) cho (3) => 3.x2 = m - 1 => x2 = \(\frac{m-1}{3}\) => x1 = m - x2 = m - \(\frac{m-1}{3}\) = \(\frac{2m+1}{3}\).
Thay x1 = \(\frac{2m+1}{3}\); x2 = \(\frac{m-1}{3}\) vào (2) ta được : \(\frac{2m+1}{3}\). \(\frac{m-1}{3}\) = m - 1
=> (2m +1)(m-1) = 9(m - 1)
<=> (2m +1)(m-1) - 9(m - 1) = 0
<=> (m - 1).(2m+ 1 - 9) = 0
<=> (m - 1)(2m - 8) = 0 <=> m = 1 hoặc m = 4
Vậy m = 1; m = 4 thoả mãn y/c
Câu hỏi của Postgass D Ace - Toán lớp 9 - Học toán với OnlineMath
Δ=(-2)^2-4(m-1)=4-4m+4=8-4m
Để phương trình có hai nghiệm thì 8-4m>=0
=>m<=2
x1+x2=2; x1x2=m-1
=>x1=2-x2
=>x1+1=3-x2
x1^2+x2^2=(x1+x2)^2-2x1x2=2^2-2(m-1)=4-2m+2=6-2m
=>x1^2=6-2m-x2^2
2x1(x1-x2)+3=7m+(x2+2)^2
=>2x1^2-2x1x2+3=7m+x2^2+2x2+4
=>2(6-2m-x2^2)-2x1x2+3-7m-x2^2-2x2-4=0
=>2(6-2m-x2^2)-2x2(3-x2)-7m-1=0
=>12-4m-2x2^2-6x2-2x2^2-7m-1=0
=>-4x2^2-6x2-11m+11=0
=>4x2^2+6x2+11m-11=0(1)
Để phương trình (1) có nghiệm thì 6^2-4*4*(11m-11)>=0
=>36-16(11m-11)>=0
=>16(11m-11)<=36
=>11m-11<=9/4
=>11m<=53/4
=>m<=53/44