Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha
\(x^2-\left(2m+3\right)x-2m-4=0\)
Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)
\(=4m^2+12m+9+8m+16\)
\(=4m^2+20m+25\)
\(=\left(2m+5\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)
theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)
Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)
\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)
\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)
\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)
Đến đấy bạn xét khoảng của m so với -2 là xong
\(x^2-\left(m-1\right)x+2m-6=0\) (1)
Để pt (1) có 2 nghiệm phân biệt thì:
\(\Delta=\left(1-m\right)^2-4\left(2m-6\right)=m^2-10m+25=\left(m-5\right)^2>0\)\(\Leftrightarrow\)\(m\ne5\)
\(x_1=\frac{m-1+\left|m-5\right|}{2}\) và \(x_2=\frac{m-1-\left|m-5\right|}{2}\)
Dễ dàng thấy \(x_1>x_2\) nên ta cần tìm m để \(x_1< -2019\)
\(\Leftrightarrow\)\(\frac{m-1+\left|m-5\right|}{2}< -2019\)
\(\Leftrightarrow\)\(\left|m-5\right|< -m-4037\)
\(\Leftrightarrow\)\(\hept{\begin{cases}-m-4037>0\\m^2-10m+25< m^2+8074m+4037^2\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\8084m>25-4037^2\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m< -4037\\m>\frac{25-4037^2}{8084}\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\m>-2016\end{cases}}}\) ( vô lí )
Vậy không có m để pt (1) có ít nhất 1 nghiệm nhỏ hơn -2019
PS: ko chắc nhé, ai thấy lỗi sai thì ib giúp
Cho phương trình \(x^2+2mx-2m+1=0\)
Xác định m để phương trình có 2 nghiệm \(x_1,x_2\)cùng lớn hơn -5
\(x^2+2mx-2m+1=0\) (1)
pt (1) có 2 nghiệm x1, x2 cùng lớn hơn -5 \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta'\ge0\\x_1+5>0\\x_2+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-1\ge0\left(2\right)\\\left(x_1+5\right)+\left(x_2+5\right)>0\left(3\right)\\\left(x_1+5\right)\left(x_2+5\right)>0\left(4\right)\end{cases}}}\)
(2) \(\Leftrightarrow\)\(\left(m+1\right)^2\ge2\)\(\Leftrightarrow\)\(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\)
Theo Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-2m\\x_1x_2=1-2m\end{cases}}\)
(3) \(\Leftrightarrow\)\(-2m+10>0\)\(\Leftrightarrow\)\(m< 5\)
(4) \(\Leftrightarrow\)\(1-2m-10m+25>0\)\(\Leftrightarrow\)\(m< \frac{13}{6}\)
Kết hợp các ĐK của m ta suy ra \(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\) hay \(m\ne k\) với \(k\in A\) và \(A=\left(-\sqrt{2}-1;\sqrt{2}-1\right)\)
...
a= 1; b'= -(m-1); c= m-3
a) Xét: Δ'=b'2-ac=[-(m-1)]2-(m-3) = m2-2m+1-m+3=m2-3m+4=m2-2.\(\dfrac{3}{2}\).m+\(\dfrac{9}{4}\)+ \(\dfrac{7}{4}\)=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)
Vì: (m-\(\dfrac{3}{2}\))2≥0, nên Δ'=(m-\(\dfrac{3}{2}\))2+\(\dfrac{7}{4}\)>0 Nên Pt có 2 nghiệm phân biệt.
b) Theo Viet ta có:
S=...= 2(m-1) và P=..= m-3
Theo bài ra PT có 2 nghiệm đối nhau nên:
\(\left\{{}\begin{matrix}P=m-3< 0\\S=2\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m=1\end{matrix}\right.\Leftrightarrow m=1\)
Vậy với m=1 thì PT có 2 nghiệm đối nhau
\(\Delta=\left(2m-3\right)^2-4\left(m-3\right)=4\left(m-2\right)^2+5>0;\forall m\)
Pt đã cho luôn có 2 nghiệm pb
Để pt có 2 nghiệm đối nhau
\(\Leftrightarrow x_1+x_2=0\)
\(\Leftrightarrow2m+3=0\Rightarrow m=-\frac{3}{2}\)