Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha

Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

lazy à cái phần ta có mình chưa hiểu lắm. bạn giúp mình duocj ko?
Ta có : \(mx^2-2\left(m+2\right)x+m+7=0\left(a=m;b=-2m-4;c=m+7\right)\)
Để phương trình có 2 nghiệm phân biệt ta có : \(\Delta>0\)hay
\(\left(-2m-4\right)^2-4m\left(m+7\right)=-12m+16>0\)
\(\Leftrightarrow-12m+16>0\Leftrightarrow-12m>16\Leftrightarrow m>-\frac{4}{3}\)
Theo Vi et : \(x_1+x_2=\frac{2m+4}{m};x_1x_2=\frac{m+7}{m}\)
\(\Leftrightarrow m\left(x_1+x_2\right)=2m+4\)(*)
Mà \(x_1x_2=\frac{m+7}{m}\Leftrightarrow m=\frac{7}{x_1x_2-1}\)(**)
Thay vào pt (*) ta có : \(\frac{7}{x_1x_2-1}\left(x_1+x_2\right)=2.\frac{7}{x_1x_2-1}+4\)

a) Tại m = -2 thì PT trở thành:
\(x^2-2\left(-2-1\right)x+\left(-2\right)^2-1=0\)
\(\Leftrightarrow x^2+6x+3=0\)
\(\Delta^'=3^2-1\cdot3=6>0\)
Khi đó PT có 2 nghiệm phân biệt
\(x_1=-3+\sqrt{6}\) ; \(x_2=-3-\sqrt{6}\)
b) Theo hệ thức Viète ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{x_1+x_2}{2}+1\right)^2=m^2\\x_1x_2+1=m^2\end{cases}}\)
\(\Rightarrow\left(\frac{x_1+x_2}{2}+1\right)^2=x_1x_2+1\) là hệ thức liên hệ
help me. please
a) "Giải và biện luận phương trình" Mình không hiểu nên tạm thời cho là tìm x.
Vì hệ số bậc cao nhất là \(1\ne0\) nên:
\(\Delta=4\left(m+1\right)^2-4\left(2m+10\right)=4m^2-36\)
\(x=\dfrac{2\left(m+1\right)\pm\sqrt{4m^2-36}}{2}\)
b)Dùng định lí Viète cho ta:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right).........\left(1\right)\\x_1x_2=2m+10.................\left(2\right)\end{matrix}\right.\)
Trừ (2) cho (1) theo từng vế cho ta:
\(x_1x_2-x_1-x_2=8\)
c) Ta có: \(P=10x_1x_2+x_1^2+x_2^2=\left(x_1+x_2\right)^2+8x_1x_2=\left[2\left(m+1\right)\right]^2+8\left(2m+10\right)=4m^2+24m+84=\left(2m+6\right)^2+48\ge48\)Dấu "=" xảy ra khi \(m=-3\).