K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Viet: `x_1+x_2=2m+2`

`x_1x_2=m^2+m-1`

Có: `1/(x_1^2)+1/(x_2^2)`

`=(x_1^2+x_2^2)/(x_1^2 x_2^2)`

`=( (x_1+x_2)^2-2x_1x_2)/(x_1^2 x_2^2)`

`=((2m+2)^2-2(m^2+m-1))/((m^2+m-1)^2)`

`=(2m^2+6m+6)/(m^4+2m^3−m^2−2m+1)`

25 tháng 5 2021

e cần gấp ạ

 

 

10 tháng 5 2015

Cái này lập \(\Delta^'\) rroif xét delta theo 3 trường hợp ><=0 nếu trường hợp nào cso nghiệm thì lấy câu b thì dùng Viet thôi

5 tháng 5 2016

a) Ta có đen ta phẩy  

=(-(m-1)2)-m2-m+1

=m2+2m+1-m2-m+1

=m+2

Để phương trình có nghiệm thì đen ta  lớn hơn hoặc bằng 0 <-> m+2 lớn hơn hoặc bằng 0 -> m lớn hơn hoặc bằng -2

b) vì đến ta > 0 (phần a) nên phương trình có 2 nghiệm x1 ; x2 

áp dụng hệ thức vi ét vào phương trình x2-2(m+1)x+m2+m-1 ta được

x1+x2=2m+2 (1)

x1*x2=m2+m-1 (2)

Mặt khác : ta có x12+x22=(x12+2x1x2+x22)-2x1x2 (3)

x12+x22=(x1+x2)2-2x1x2

Thay (1),(2) vào (3) ta được :x12+x22=(2m+2)2-2*(m2+m-1)=0

<-> 4m2+8m+4-2m2-2m+2=0

<-> 2m2+6m+6=0

ta có đen ta = 36-48=-12

Do đen ta < 0 nên phương trình vô nghiệm

Vì phương trình vô nghiệm nên ko tồn tại 2 nghiệm x1 và x2

đen ta kí hiệu là hình tam giác 

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

2 tháng 5 2017

để phương trình có 2 nghiệm phân biệt thì delta' > 0 \(\Leftrightarrow\left(m-2\right)^2+m^2>0\)ta được 1 phương trình luôn lớn hơn 0 vơi mọi m 

áp dụng hệ thức viet vào phương trình ta được \(\hept{\begin{cases}x1+x2=-2\left(m-2\right)\\x1.x2=-m^2\end{cases}}\)

ta có |x1|-|x2|=6 \(\Leftrightarrow\)x12+x22-2|x1.x2|-6=0 \(\Leftrightarrow\)(x1+x2)2-2x1x2-2|x1x2|-6=0 \(\Leftrightarrow\left(-2\left(m-2\right)\right)^2+2m^2-2\left|-m^2\right|-6=0\)

 giải phương trình có chứa dâu giá trị tuyệt đối rồi đối chiếu với điều kiện để chọn và tìm m phù hợp

1 tháng 4 2019

Bài 2. \(x^2-mx+m-1=0\)(1)

a) Phương trình (1) có: \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0,\forall m\)

Suy ra phương trình luôn có nghiệm với mọi m

b) Áp dụng định lí Vi ét ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)

Ta có: \(x_1^2-x_2^2+x_1+x_2=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)+\left(x_1+x_2\right)=0\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=0\)

<=>\(\orbr{\begin{cases}x_1+x_2=0\\x_1-x_2+1=0\end{cases}}\)

+) Với \(x_1+x_2=0\Leftrightarrow m=0\)(tm)

+) Với \(x_1-x_2+1=0\Leftrightarrow x_1=-1+x_2\)

Ta có \(x_1+x_2=m\Leftrightarrow-1+x_2+x_2=m\Leftrightarrow x_2=\frac{m+1}{2}\)

=> \(x_1=-1+x_2=-1+\frac{m+1}{2}=\frac{m-1}{2}\)

ta lại có: \(x_1.x_2=m-1\Leftrightarrow\frac{m+1}{2}.\frac{m-1}{2}=m-1\Leftrightarrow\orbr{\begin{cases}m-1=0\\\frac{m+1}{4}=1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)(TM)

Vậy 

1 tháng 4 2019

Sửa lại :

2b) 

\(x_1^2-x_2^2+x_1-x_2=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x_1-x_2=0\\x_1+x_2+1=0\end{cases}}\)

Với \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Ta có:\(x_1+x_2=m\Leftrightarrow2x_1=m\Leftrightarrow x_1=x_2=\frac{m}{2}\)

\(x_1.x_2=m-1\Leftrightarrow\frac{m}{2}.\frac{m}{2}=m-1\Leftrightarrow m^2=4m-4\Leftrightarrow\left(m-2\right)^2=0\Leftrightarrow m=2\)

+) Với \(x_1+x_2+1=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)

Vậy m=-1 hoặc m=2

14 tháng 6 2015

a/ thay m=-3 vào pt ta dc : x2 - 2 * (-1) *x -12 +3 = 0 => x+2x - 9 = 0

\(\Delta\)= 1 + 9 = 10 => x1 = -1 + căng 10

                            x2  = -1 - căng 10

b/ có : \(\Delta\)' = [ - (m+2) ] - (4m + 3) = m2 + 4m + 4 - 4m - 3 = m+ 1 > 0 vs mọi m => có 2 nghiệm pb

có : A  = x1+ x2- 10( x1 + x2) = (x1+x2)- 2x1x2 - 10( x1 + x2 ) = ( 2m + 4 )2 - 2 ( 4m + 3 ) - 10 ( 2m + 4 ) = 4m+ 16m + 16 - 8m - 6 - 20m -40 = 4m2 -12m -30  

rồi bn bấm máy tính ra kết quả nha ^^


 


 

5 tháng 5 2016

a) Thay m=-3 vào phương trình ta được :

x2-2((-3)+2))x+4*(-3)+3=0

x2+2x-9=0

ta có đen ta phẩy =1+9=10

vì đen ta > 0 nên phương trình có 2 nghiệm phân biệt :

x1=-1-(căn 10)

x2=-1+(căn 10)

Vậy pt có nghiệm là {-1-(căn 10) ; -1+(căn 10)} 

bn ơi mk chỉ lm đc phần a thôi phần b bn thử tính đen ta > 0 theo m ở pt ban đầu xem

b)