\(x^2-2\left|x\right|+1-4a^2=0\)(x là ẩn số)

Giải phương trình với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

a.

Ta co:

\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)

(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)

(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)

b.

Ta lai co:

\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)

Xet (3)

De phuong trinh dau co 4 nghiem thi PT(3) co nghiem

\(\Rightarrow\Delta^`>0\)

\(\Leftrightarrow4a^2>0\)

\(\Leftrightarrow a>0\)

\(\Rightarrow x_1=1+2a;x_2=1-2a\)

Tuong tu

(4)

\(a>0\)

\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)

\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)

\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)

\(\Rightarrow S< +\infty\)

15 tháng 5 2017

what the đề yêu cầu ?

NV
5 tháng 5 2019

\(\left\{{}\begin{matrix}x_1+x_2=-2019\\x_1x_2=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_3+x_4=-2020\\x_3x_4=2\end{matrix}\right.\)

\(Q=\left(x_1+x_3\right)\left(x_1+x_4\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\)

\(Q=\left(x_1^2+x_1x_4+x_1x_3+x_3x_4\right)\left(x_2^2-x_2x_4-x_2x_3+x_3x_4\right)\)

\(Q=\left(x_1^2+x_1\left(x_3+x_4\right)+x_3x_4\right)\left(x_2^2-x_2\left(x_3+x_4\right)+x_3x_4\right)\)

\(Q=\left(x_1^2-2020x_1+2\right)\left(x_2^2+2020x_2+2\right)\)

Mặt khác do \(x_1\); \(x_2\) là nghiệm của \(x^2+2019x+2=0\) nên:

\(\left\{{}\begin{matrix}x_1^2+2019x_1+2=0\\x_2^2+2019x_2+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2+2=-2019x_1\\x_2^2+2=-2019x_2\end{matrix}\right.\)

\(\Rightarrow Q=\left(-2019x_1-2020x_1\right)\left(-2019x_2+2020x_2\right)\)

\(Q=-4039x_1.x_2=-4039.2=-8078\)

4 tháng 5 2017

Mình nghĩ thế này bạn à:

PT1: \(x^2+2013x+2=0.\)Theo Hệ thức Vi-ét ta có: \(x_1+x_2=-2013\\ x_1.x_2=2\)

Tương tự với PT2 ta có:\(x_3+x_4=-2014\\ x_3.x_4=2\)

\(Q=\left[\left(x_1+x_3\right)\left(x_2-x_4\right)\right]\left[\left(x_2_{ }-x_3\right)\left(x_1+x_4\right)\right]\)

\(Q=\left(x_1.x_2+x_2.x_3-x_1.x_4-x_3.x_4\right)\left(x_1.x_2+x_2.x_4-x_1.x_3-x_3.x_4\right)\)

\(Q=\left(2+x_2.x_3-x_1.x_4-2\right)\left(2+x_2.x_4-x_1.x_3-2\right)\)

\(Q=\left(x_2.x_3-x_1.x_4\right)\left(x_2.x_4-x_1.x_3\right)\)

\(Q=x_2.x_3.x_4-x_3.x_1.x_2-x_4.x_1.x_2+x_1.x_3.x_4\)

\(Q=2x_2-2x_3-2x_4+2x_1\)

\(Q=2\left(x_1+x_2\right)-2\left(x_3+x_4\right)\)

\(Q=2.\left(-2013\right)-2.\left(-2014\right)\)

\(Q=2\)

Bài này hay quá. Chúc bạn học tốt nhé

16 tháng 4 2016

khó thế

NV
28 tháng 6 2020

Giả sử tất cả các pt dưới đây đều có nghiệm

\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)

Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)

\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)

Giả sử (2) có 2 nghiệm \(t_1;t_2\)

Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)

Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)

\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)

\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)

NV
15 tháng 7 2020

Đặt \(x^2=t\ge0\Rightarrow t^2-2mt+2m+6=0\) (1)

Để pt đã cho có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-2m-6>0\\t_1+t_2=2m>0\\t_1t_2=2m+6>0\end{matrix}\right.\) \(\Rightarrow m>\sqrt{7}+1\)

Giả sử (1) có 2 nghiệm dương \(0< t_1< t_2\)\(\Rightarrow\left[{}\begin{matrix}x^2=t_1\\x^2=t_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-\sqrt{t_2}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_1}\\x_4=\sqrt{t_2}\end{matrix}\right.\) \(\Rightarrow\sqrt{t_2}-2\sqrt{t_1}-2\sqrt{t_1}+\sqrt{t_2}=0\)

\(\Leftrightarrow\sqrt{t_2}=2\sqrt{t_1}\Rightarrow t_2=4t_1\)

Kết hợp Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m\\t_2=4t_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}t_1=\frac{2m}{5}\\t_2=\frac{8m}{5}\end{matrix}\right.\)

\(t_1t_2=2m+6\Rightarrow\frac{16m^2}{25}=2m+6\)

\(\Rightarrow16m^2-50m-150=0\Rightarrow\left[{}\begin{matrix}m=5\\m=-\frac{15}{8}\left(l\right)\end{matrix}\right.\)