\(x^2-2\left(m+1\right)x+4m-2=0\)\

a)tìm m để pt có 2 n...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

a. Để pt có 2 nghiệm phân biệt \(\Delta>0\) <=> (m+1)2-1(4m-2)>0

m2+2m+1 -4m+2>0

m2-2m +3 >0

18 tháng 8 2017

a) \(\Delta'=\left(m+1\right)^2-\left(4m-2\right)=m^2+2m+1-4m+2\)

\(\Delta'=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\)

ta có : \(\left(m-1\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(m-1\right)^2+2\ge2>0\) với mọi \(m\)

\(\Leftrightarrow\Delta'>0\) với mọi \(m\) \(\Leftrightarrow\) phương trình luôn có 2 nghiệm phân biệt với mọi \(m\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1x_2=\dfrac{c}{a}=\dfrac{4m-2}{1}=4m-2\end{matrix}\right.\)

ta có : \(x_1x_2-2\left(x_1+x_2\right)=4m-2-2\left(2m+2\right)\)

\(\Leftrightarrow x_1x_2-2x_1-2x_2=4m-2-4m-4=-6\)

\(\Leftrightarrow x_1x_2-2x_1-2x_2+6=0\)

vậy hệ thức liên hệ giữa các nghiệm của phương trình không phụ thuộc vào m là \(x_1x_2-2x_1-2x_2+6=0\)

c) ta có : phương trình có 2 nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1x_2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\left(tmđk\right)\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow4m< 2\Leftrightarrow m< \dfrac{2}{4}\Leftrightarrow m< \dfrac{1}{2}\)

vậy \(x< \dfrac{1}{2}\) thì phương trình có 2 nghiệm trái dấu

d) áp dụng hệ thức vi ét ta có : \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m-2\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2-2x_1^2x_2-2x_1x_2^2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(4m-2\right)-2\left(4m-2\right)\left(2m+2\right)=0\)

\(\Leftrightarrow4m^2+8m+4-8m+4-2\left(8m^2+8m-4m-4\right)=0\)

\(\Leftrightarrow4m^2+8m+4-8m+4-16m^2-16m+8m+8=0\)

\(\Leftrightarrow-12m^2-8m+16=0\Leftrightarrow-3m^2-2m+4=0\)

\(\Delta'=\left(-1\right)^2-\left(-3\right)\left(4\right)=1+12=13>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(m_1=\dfrac{1+\sqrt{13}}{-3}\) ; \(m_2=\dfrac{1-\sqrt{13}}{-3}\)

vậy \(m=\dfrac{1+\sqrt{13}}{-3};m=\dfrac{1-\sqrt{13}}{-3}\)

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

17 tháng 4 2020

tìm đk m khác 0

 đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1

áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)

=) x1x- 3(x1+x2)=-5