\(x^2-2\left(m-1\right)x+m^2-m-1=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

câu này dùng delta để cm có 2 nghiệm rồi sử dụng viet sau đó biến đổi cái pt kia rồi thay số vào là xong à

2 tháng 5 2019

Bạn giúp mình biến đổi PT \(2\left(mx_1+x_2\right)\le m^2-1+2x_1^2+x_2^2\)được không?

NV
3 tháng 10 2019

Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:

\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)

Tương tự: \(x_2^2+3x_2-2=8x_2-1\)

\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)

Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)

Thay vào:

\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)

\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)

\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)

Bạn tự thay số

3 tháng 10 2019

@Nguyễn Việt Lâm

18 tháng 9 2019

Ta có:  \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)

=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.

Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)

Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)

\(=-\left(m-2\right)^2+49\le49\)

Vậy min Q = 49 tại m=2

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

NV
2 tháng 7 2020

\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)

\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)

\(\Leftrightarrow\left(2m+3\right)^2-4\left(m^2+2m+2\right)=2m+3+x_1\)

\(\Leftrightarrow4m+1=2m+3+x_1\)

\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)

\(x_1x_2=m^2+2m+2\)

\(\Rightarrow5\left(2m-2\right)=m^2+2m+2\)

\(\Rightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)