\(x^2-2\left(m-1\right)x+m-3=0\). Chứng minh phương trình luôn có 2 nghi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )

Ta có : \(\Delta'=b'^2-ac\)

\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)

\(=m^2-2m+1-m+3\)

\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)

Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

14 tháng 5 2020

Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)

PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)

=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m

Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)

Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)

Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)

8 tháng 3 2021

m( x- 4x + 3 ) + 2( x - 1 ) = 0

<=> mx2 - 4mx + 3m + 2x - 2 = 0

<=> mx2 - 2( 2m - 1 )x - 2 = 0

ĐKXĐ : m ≠ 0

Δ = b2 - 4ac = [ -2( 2m - 1 ) ]2 + 8

= 4( 2m - 1 )2 + 8

Dễ thấy Δ ≥ 8 > 0 ∀ m

hay pt luôn có nghiệm với mọi m ≠ 0 ( đpcm )

6 tháng 6 2018

\(x^2-mx+m-2=0\) (1)  (a=1;b=-m;c=m-2)

\(\Delta=b^2-4ac=m^2-4.\left(-m\right).\left(m-2\right)\)

\(=m^2+4m^2-8m\)

=5m2-8m

Đến đây đưa về hằng đẳng thức mà ra dấu (-) bn xem đề có sai ko