Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m^2-1\right)\)
\(=4m^2-8m+4-8m^2+8\)
\(=-4m^2-8m+12\)
Để phương trình có hai nghiệm phân biệt thì -4m^2-8m+12>0
=>4m^2+8m-12<0
=>m^2+2m-3<0
=>(m+3)(m-1)<0
=>-3<m<1
\(A=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(\dfrac{2m-2}{2}\right)^2-4\cdot\dfrac{m^2-1}{2}\)
\(=\left(m-1\right)^2-2\left(m^2-1\right)\)
\(=m^2-2m+1-2m^2+2=-m^2-2m+3\)
\(=-\left(m^2+2m-3\right)\)
\(=-\left(m^2+2m+1-4\right)\)
\(=-\left(m+1\right)^2+4< =4\)
Dấu = xảy ra khi m=-1
\(\text{Δ}=\left(2m+6\right)^2-4\left(m^2-3\right)\)
\(=4m^2+24m+36-4m^2+12=24m+48\)
Để phương trình có hai nghiệm thì 24m+48>=0
=>m>=-2
\(P=5\left(-2m-6\right)-2\left(m^2-3\right)\)
\(=-10m-30-2m^2+6\)
\(=-2m^2-10m-24\)
\(=-2\left(m^2+5m+12\right)\)
\(=-2\left(m^2+5m+\dfrac{25}{4}+\dfrac{23}{4}\right)\)
\(=-2\left(m+\dfrac{5}{2}\right)^2-\dfrac{23}{2}< =-\dfrac{23}{2}\)
Dấu = xảy ra khi m=-5/2
Để pt có 2 nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)
\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)
\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)
\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)
Đặt \(\frac{1}{m-1}=t\)
\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)
\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)
\(\Rightarrow m_{max}=5\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\frac{2m+1+3}{2}=m+2\\x_2=\frac{2m+1-3}{2}=m-1\end{matrix}\right.\)
Để phương trình có 2 nghiệm âm phân biệt:
\(\Rightarrow x_1< 0\Rightarrow m+2< 0\Rightarrow m< -2\)
Khi đó:
\(A=x_1\left(x_2+5\right)=\left(m+2\right)\left(m-1+5\right)=\left(m+2\right)\left(m+4\right)\)
\(A=m^2+6m+8=\left(m+3\right)^2-1\ge-1\)
\(\Rightarrow A_{min}=-1\) khi \(m+3=0\Leftrightarrow m=-3< -2\) (thỏa mãn)
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
Lời giải:
Ta thấy: $\Delta'=(m-1)^2+m^3-(m+1)^2=m^3-4m$
Để pt có nghiệm thì $m^3-4m\geq 0\Leftrightarrow m\geq 2$ hoặc $-2\leq m\leq 0$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=-m^3+(m+1)^2\end{matrix}\right.\)
Khi đó:
\(P=x_1^3+x_2^3+3x_1x_2(x_1+x_2)+8x_1x_2\)
\(=(x_1+x_2)^3+8x_1x_2\)
\(=8(m-1)^3-8m^3+8(m+1)^2=40m-16m^2\)
Xét $f(m)=40m-16m^2$
$f'(m)=40-32m=0\Leftrightarrow m=1,25$ (loại vì $m\in [-2;0]\cup [2;3]$)
Lập bảng biến thiên ta thấy:
$P_{\min}=P(-2)=-144$
$P_{\max}=P(2)=16$