\(x^2-12x+4=0\) có 2 nghiệm dương phân biệt \(x_1;...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Ta có:

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

\(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\dfrac{136}{4}=34\)

8 tháng 4 2022

pt đã cho có \(\Delta'=\left(-6\right)^2-1.4=32>0\)

\(\Rightarrow\)pt đã cho có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=12\\x_1x_2=4\end{cases}}\)

Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=12^2-2.4=136\)

Mặt khác \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=12+2\sqrt{4}=16\)\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=4\)

\(\Rightarrow T=\frac{136}{4}=34\)

21 tháng 5 2020

srtgb6yyyyyyyy

24 tháng 5 2020

\(2018x^2-\left(m-2019\right)x-2020=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)

             \(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))

Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)

Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)

\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)

\(\Leftrightarrow x_1^2-x_2^2=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)

Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)

                                                                                      \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)

\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)

Vậy không có m để thỏa mãn bài toán 

28 tháng 4 2020

a) \(x_1^2+x_2^2=23\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=23\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow5^2-2\left(m+4\right)=23\)

<=> m=-3

b) \(x_1^3+x_2^3=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=35\)

\(\Leftrightarrow5\left[5^2-3\left(m+4\right)\right]=35\)

<=> m=2

c) \(\left|x_2-x_1\right|=3\)

\(\Leftrightarrow\left(\left|x_2-x_1\right|\right)^2=3^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_1^2=3^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

<=> m=0

28 tháng 4 2020

ĐK để pt có hai nghiệm phân biệt là: \(\Delta>0\Leftrightarrow25-4\left(m+4\right)>0\Leftrightarrow m< \frac{9}{4}\) ( @@) 

Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí Viet ta có: \(x_1+x_2=5;x_1.x_2=m+4\)

a) \(x_1^2+x_2^2=23\)

<=> \(x_1^2+x_2^2+2x_1x_2=23+2x_1x_2\)

<=> \(\left(x_1+x_2\right)^2=23+2x_1x_2\)

=> \(25=23+2\left(m+4\right)\)

<=>m = -3 ( thỏa mãn @@) 

b) \(x_1^3+x_2^3=35\)

<=> \(\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=35\)

=> \(5^3-3.5.\left(m+4\right)=35\)

<=> m = 2 ( thỏa mãn @@) 

c) \(\left|x_2-x_1\right|=3\)

<=> \(\left(x_1-x_2\right)^2=9\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2=9\)

=> \(5^2-4\left(m+4\right)=9\)

<=> m = 0 ( thỏa mãn @@)

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2

4 tháng 3 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

4 tháng 3 2022

?????