K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2021

Đặt \(x^2=t\) phương trình trở thành:

\(t^2-2\left(m+1\right)t+m-2=0\) (1)

a. Phương trình có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m-2\right)>0\\t_1+t_2=2\left(m+1\right)>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+3>0\left(\text{luôn đúng}\right)\\m>-1\\m>2\end{matrix}\right.\) 

\(\Rightarrow m>2\)

b. Do \(\Delta'=m^2+m+3>0;\forall m\) nên pt đã cho vô nghiệm khi (1) có 2 nghiệm pb đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=2\left(m+1\right)< 0\\t_1t_2=m-2>0\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

c. Pt có đúng 2 nghiệm khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow t_1t_2=m-2< 0\Rightarrow m< 2\)

a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)

\(\Leftrightarrow-2< m< 3\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

 

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m

21 tháng 3 2021

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

12 tháng 5 2021

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

13 tháng 5 2021

Vậy m=3, và ngiệm còn lại x2=7

23 tháng 7 2021

còn cái nịt

10 tháng 3 2022

a, bạn tự giải 

b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 

c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)

Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)

hay nghiệm còn lại là -1 

3 tháng 6 2021

 a, \(x^2-\left(2m+1\right)x+m^2+5m=0\)

Với m=2 

\(x^2-\left[2.\left(-2\right)+1\right]x+\left(-2\right)^2+5.\left(-2\right)=0\)

\(x^2+3x-6=0\)

\(\Delta=3^2-4.1.\left(-6\right)\)

     \(=9+24\)

\(=33>0\Rightarrow\sqrt{\Delta}=\sqrt{33}\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-3+\sqrt{33}}{2}\)

\(x_2=\dfrac{-3-\sqrt{33}}{2}\)

Vậy khi m=-2 thì phương trình có nghiệm là \(x_1=\dfrac{-3+\sqrt{33}}{2};x_2=\dfrac{-3-\sqrt{33}}{2}\)

b,Ta có \(\Delta=\left[-\left(2m+1\right)\right]^2-4\left(m^2+5m\right)\)

                 \(=4m^2+4m+1-4m^2-20m\)

                 \(=1-16m\)

Phương trình có 2 nghiệm\(\Leftrightarrow\Delta\ge0\)

                                          \(\Leftrightarrow1-16m\ge0\)

                                          \(\Leftrightarrow m\le\dfrac{1}{16}\)

Khi đó hệ thức viet ta có tích các nghiệm là\(m^2+5m\)

Mà tích các nghiệm bằng 6, do đó \(m^2+5m=6\)

                                                   \(\Leftrightarrow m^2+5m-6=0\)

Ta thấy \(a+b+c=1+5+\left(-6\right)=0\) nên \(m_1=1;m_2=-6\)

Đối chiếu với điều kiện \(m\le\dfrac{1}{16}\) thì \(m=-6\) là giá trị cần tìm

-Chúc bạn học tốt-