K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

à đây là lớp 9 mà mình tưởng lớp 6 !??

2 tháng 7 2020

ms học lớp 5 nên giải câu a )

\(-x^2+\left(2m-2\right)x-m^2+3m-3=0\)

thay \(m=2\)vào PT(1)

ta có \(-x^2+\left(2.2-2\right)x-2^2+3.2-3=0\)

   \(\Leftrightarrow-x^2+2x-4+6-3=0\)

\(\Leftrightarrow-x^2+2x-4+3=0\)

\(\Leftrightarrow-x^2+2x-4=-3\)

\(\Leftrightarrow-x^2+2x=1\)

....

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-16m+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có: 2(m-1)=6

=>m-1=3

=>m=4

24 tháng 5 2021

Đề bài của b thiếu vế phải nên mihf mặc định bằng 0 luôn nha.

a) m=-1 => \(x^2-x-2=0\)

Xét a-b+c=1+1-2=0

=>x1= -1 ; x2=2

b) Delta =\(\left(2m+1\right)^2-4\left(m^2+3m\right)=4m^2+4m+1-4m^2-12m=-8m+1\)

Pt có 2 nghiệm pb=> \(-8m+1\ge0\Leftrightarrow m\le\frac{1}{8}\)

ÁP dụng định lí Viets ta có:

x1+x2=-2m-1

x1.x2=\(m^2+3m\)

Ta có: x1.x2=4

=>\(m^2+3m=4\Leftrightarrow m^2+3m-4=0\)

Xét a+b+c=1+3-4=0

=>m1= 1(loại)

   m2=-4(thỏa mãn)

Vậy m=-4

16 tháng 2 2020

a. Thay \(m=-2\) vào pt đề cho ta được pt:

\(x^2-6x-7=0\left(2\right)\)

Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)

b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)

Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)

\(\Leftrightarrow m\le6\)

Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)

Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)

Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:

\(6\left(2m-3\right)=24\)

\(\Rightarrow2m-3=4\)

\(\Rightarrow2m=7\)

\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)

Vậy .............

16 tháng 2 2020

b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)

Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)

Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)

Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)

\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)

\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)