Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Đây là 2 TH mà 2 tập giao nhau bằng rỗng (trên hình vẽ chúng nằm rời nhau), nhìn hình ta thấy chúng xảy ra khi:
D=\(\left[{}\begin{matrix}m+5\le-2\\m\ge3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-7\\m\ge3\end{matrix}\right.\)
(Chú ý tới đầu mút của các tập xem dấu "=" có thể xảy ra hay ko)
Do đó 2 tập giao nhau khác rỗng khi: \(-7< m< 3\) (chính là phần bù trong R của D)
Cách thứ 2 là làm trực tiếp:
Đây là TH mà 2 tập giao nhau khác rỗng (trên hình vẽ chúng sẽ chạm nhau):
Nhưng ở hình trên, nếu tiếp tục dịch chuyển tập [m; m+5) qua trái một cách "quá mức", nghĩa là thế này:
Thì 2 tập sẽ ko còn giao nhau nữa (tương tự với hình còn lại)
Do đó, từ hình vẽ ta thấy để 2 tập giao nhau khác rỗng thì 2 điều sau cần phải xảy ra:
\(m< 3\) (phần tử nhỏ nhất của tập "này" nhỏ hơn phần tử lớn nhất của tập "kia")
Và \(m+5>-2\) (phần từ lớn nhất của tập "này" lớn hơn phần tử nhỏ nhất của tập "kia")
Viết ngắn gọn: \(\left\{{}\begin{matrix}m< 3\\m+5>-2\end{matrix}\right.\) \(\Leftrightarrow-7< m< 3\)
Hai cách làm đều cho kết quả giống nhau
Và vẫn cần chút ý đến các mút xem dấu "=" có xảy ra hay ko