\(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) . Tìm m để phương trình đã cho c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2021

\(\Leftrightarrow\left(x^2-2x+m\right)^2-x^2-\left(x^2-3x+m\right)=0\)

\(\Leftrightarrow\left(x^2-3x+m\right)\left(x^2-x+m\right)-\left(x^2-3x+m\right)=0\)

\(\Leftrightarrow\left(x^2-3x+m\right)\left(x^2-x+m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+m=0\\x^2-x+m-1=0\end{matrix}\right.\)

Pt đã cho có 4 nghiệm khi:

\(\left\{{}\begin{matrix}\Delta_1=9-4m\ge0\\\Delta_2=1-4\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{9}{4}\\m\le\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow m\le\dfrac{5}{4}\)

6 tháng 12 2020

Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)

Ko mất tính tổng quát, giả sử \(x_1=3x_2\)

Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)

Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)

\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)

Vậy ko tồn tại m thỏa mãn

5 tháng 12 2019

thôi khỏi lớp 10 á bye nha