Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-ĐKXĐ: \(x\ne5\)
\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)
\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)
\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)
\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)
\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)
\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)
-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)
-Sửa lại:
-ĐKXĐ: \(x\ne5\)
\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)
\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)
\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)
\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)
\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)
\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)
-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)
-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
ĐKXĐ : \(x\ne5;2m\)
\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)
\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)
\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)
\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)
\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
Đk: \(x\ne m,x\ne2,x\ne2m\)
Ta có: \(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)
=> \(3\left(x-2\right)\left(x-2m\right)-\left(x-m\right)\left(x-2m\right)=2\left(x-m\right)\left(x-2\right)\)
<=> \(3\left(x^2-2mx-2x+4m\right)-x^2+2mx+mx-2m^2=2\left(x^2-2x-mx+2m\right)\)
<=> \(3x^2-6mx-6x+12m-x^2+2mx+mx-2m^2-2x^2+4x+2mx-4m=0\)
<=> \(-2x-mx+8m-2m^2=0\)
<=> \(x\left(m+2\right)=8m-2m^2\)
Để pt có nghiệm duy nhất <=> m + 2 khác 0 <=> m khác -2