\(\dfrac{x+2}{x-m}-1=\dfrac{2}{x-1}\).Tìm m để phương trình

a)c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

bn copy ghê

18 tháng 3 2021

ĐKXĐ : \(\hept{\begin{cases}x\ne-4\\x\ne-m\end{cases}}\)

a) Để pt có nghiệm x = 4 thì \(\frac{4-m}{8}=2\)=> 4 - m = 16 <=> m = -12 ( tm )

Vậy với m = -12 thì pt có nghiệm x = 4

b) (1) <=> \(\frac{x^2-m^2}{\left(x+4\right)\left(x+m\right)}+\frac{x^2-16}{\left(x+4\right)\left(x+m\right)}=\frac{2\left(x+4\right)\left(x+m\right)}{\left(x+4\right)\left(x+m\right)}\)

=> 2x2 - m2 - 16 = 2x2 + ( 2m + 8 )x + 8m

<=>  \(x=\frac{\left(m+4\right)^2}{2\left(m+4\right)}=\frac{m+4}{2}\)

Vậy pt luôn có nghiệm duy nhất ∀ x ≠ -4 và x ≠ -m

28 tháng 2 2020

a)\(\frac{x+2}{x-m}=\frac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)

\(\Leftrightarrow x^2+x-3=x^2-\left(m-1\right)x-m\)

\(\Leftrightarrow m.x+m-3=0\)

\(\Leftrightarrow m.x=3-m\)

Để phương trình (1) nhận \(x=4\)là nghiệm của phương trình thì:

\(4.m=3-4=-1\)

\(\Leftrightarrow m=\frac{-1}{4}\)

b) Để phương trình \(a.x+b=0\)có nghiệm duy nhất thì:\(a\ne0\)

\(\Rightarrow\)Phương trình (1) có nghiệm duy nhất \(\Leftrightarrow m\ne0\)

28 tháng 2 2020

Bổ sung điều kiện: \(\hept{\begin{cases}x\ne m\\x\ne1\end{cases}}\)

\(\Rightarrow m\ne1\)

a) m thỏa mãn điều kiện 

b) Bổ sung thêm: Để phương trình (1) có nghiệm duy nhất thì:\(\hept{\begin{cases}m.m+m-3\ne0\\m.1+m-3\ne0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m\ne\frac{-1\pm\sqrt{13}}{2}\\m\ne\frac{3}{2}\end{cases}}\)