Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay t = 3 vào phương trình, ta được:
\(1-a-3=2a\left(a+2\right)\)
\(\Leftrightarrow-2-a=2a^2+4a\)
\(\Leftrightarrow2a^2+5a+2=0\)
Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)
5)
a)
Có 3x+y = 1
\(\Rightarrow x+x+x+y=1\)
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)
\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)
\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)
b)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)
\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)
3)
Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
Đặt b + c - a = x , a+c-b = y , a+b-c= z
\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)
Có :
\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)
Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)
\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)
\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)
\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)
a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6
Vậy phương trình (1) có một nghiệm duy nhất x = 6.
b. Ta có:
2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:
(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7
Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
\(\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a^2-3a}\right):\dfrac{2a+2}{a}=\left(\dfrac{a-3}{a}-\dfrac{a}{a-3}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9}{a\left(a-3\right)}-\dfrac{a^2}{a\left(a-3\right)}+\dfrac{9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\left(\dfrac{a^2-6a+9-a^2+9}{a\left(a-3\right)}\right):\dfrac{2a+2}{a}=\dfrac{18-6a}{a\left(a-3\right)}:\dfrac{2a+2}{a}=\dfrac{6a-18}{\left(-a\right)\left(3-a\right)}:\dfrac{2a+2}{a}=\dfrac{6}{\left(-a\right)}:\dfrac{2a+2}{a}=\dfrac{6a}{\left(-2a^2\right)+\left(-2a\right)}.DKXD:a\ne0;a\ne3\)
\(a^3+6=-3a-2a^2\)
\(\Rightarrow a^3+6+3a+2a^2=0\)
\(\Rightarrow a\left(a^2+3\right)+2\left(a^2+3\right)=0\)
\(\Rightarrow\left(a+2\right)\left(a^2+3\right)=0\)
Vì \(a^2+3>0\forall a\in R\) nên \(a+2=0\Leftrightarrow a=-2\)
\(A=\dfrac{a-1}{a+3}=\dfrac{-2-1}{-2+3}=\dfrac{-3}{1}=-3\)
1)
\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)
dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)
\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)
\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)
giải giúp mình với
Thay \(t=3\) vào pt trên :
\(\Rightarrow\dfrac{2}{5-3}-a-3=2a\left(a+2\right)\)
\(\Rightarrow21-a-3-2a^2-4a=0\)
\(\Rightarrow-2a^2-5a+18=0\)
\(\Rightarrow\left\{{}\begin{matrix}a_1=2\\a_2=-\dfrac{9}{2}\end{matrix}\right.\)
Vậy để pt có \(t=-3\) là nghiệm thì \(a=2\) và \(a=-\dfrac{9}{2}\)