Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4
p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1
dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)
mậy minP = 1 khi m = 1
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8\)
\(=\left(2m-4\right)^2+8>0\forall m\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có: 2(m-1)=6
=>m-1=3
=>m=4
Chuyển vế :
\(x_1^2=2\left(m+1\right)x_1-m^2+1\)
thay vào Phuogw trình tìm m thôi
1. Với m=5
\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)
\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)
nên x thuộc rỗng
\(\Delta=4.\left(m+4\right)^2-4.\left(m^2-8\right)=4m^2+32m+64-4m^2+32\)
\(=32m+96\)
Để PT trình có 2 nghiệm thì: \(32m+96\ge0\Leftrightarrow m\ge-3\)
Theo hệ thức viet ta có: \(x_1+x_2=2\left(m+4\right);x_1.x_2=m^2-8\)
Suy ra: A=x1+x2+3x1.x2=2(m+4)+3(m2-8)=2m+8+3m2-24
=3m2+2m-16=\(3.\left(m^2+\frac{2}{3}m-\frac{16}{3}\right)=3.\left(m^2+2.m.\frac{1}{3}+\frac{1}{9}-\frac{49}{9}\right)\)
\(=3.\left(m^2+2.m.\frac{1}{3}+\frac{1}{9}\right)-\frac{49}{3}\)
Lớn nhất hay nhỏ nhất =="
a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)
\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)
b) A=\(x^4-13x^2+36\) không làm được nữa.....