\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

\(\Leftrightarrow A=\dfrac{\left(x-a\right)^2-\left(x+a\right)^2+3a^2+a}{\left(x-a\right)\left(x+a\right)}\)

\(\Leftrightarrow A=\dfrac{-4ax+3a^2+a}{\left(x-a\right)\left(x+a\right)}\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne a\\4ax=a\left(3a+1\right)\left(1\right)\end{matrix}\right.\)

a) với a=-3

\(\left(1\right)\Leftrightarrow4x=3.\left(-3\right)+1\Rightarrow x=-2\)(NHAN)

b)với a=-1

\(\left(1\right)\Leftrightarrow4x=3.\left(-1\right)+1\Rightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)(NHẬN)

c)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\x=\dfrac{3a+1}{4}=0,5\Rightarrow a=\dfrac{1}{3}\left(nhan\right)\end{matrix}\right.\)

a: Khi a=-3 thì phương trình sẽ là:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{3\cdot9-3}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

=>12x=-24

hay x=-2

b: Khi a=1 thì phương trình trở thành:

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1+4=0\)

=>-4x+4=0

hay x=1(loại)

10 tháng 2 2019

\(\dfrac{x+a}{a-x}+\dfrac{x-a}{a+x}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)}{\left(a-x\right)\left(a+x\right)}+\dfrac{\left(x-a\right)\left(a-x\right)}{\left(a+x\right)\left(a-x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{\left(x+a\right)\left(a+x\right)+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)

\(\Leftrightarrow\dfrac{xa+x^2+a^2+ax+xa-x^2-a^2+ax}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(\Rightarrow4ax=a\left(3a+1\right)\)

<=> 4ax-a(3a+1)=0

<=> 4ax-3a2-a=0

<=> a(4x-3a-1)=0 (*)

a) Thay a=-3 vào phương trình ta có :

\(\dfrac{x-3}{-3-x}+\dfrac{x-3}{-3+x}=\dfrac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

ĐKXĐ : \(x\ne\pm3\)

(*) <=> -3[4x-3.(-3)-1]=0

<=> -3(4x+8)=0

<=> (-3).4x+(-3).8=0

<=> -12x-24=0

<=> -12x=24

<=> x=-2

Vậy phương trình có nghiệm x=-2

b) Thay x=1/2 vào phương trình ta có :

(*) \(\Leftrightarrow a\left(4.\dfrac{1}{2}-3a-1\right)=0\)

\(\Leftrightarrow a\left(2-3a-1\right)=0\)

<=> a(1-3a)=0

\(\Leftrightarrow\left[{}\begin{matrix}a=0\\1-3a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=\dfrac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;\dfrac{1}{3}\right\}\)

2: \(\left(\dfrac{7}{a+7}+\dfrac{a^2+49}{a^2-49}-\dfrac{7}{a-7}\right):\dfrac{a+1}{2}\)

\(=\dfrac{7a-49+a^2+49-7a-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}\)

\(=\dfrac{a^2-49}{\left(a-7\right)\left(a+7\right)}\cdot\dfrac{2}{a+1}=\dfrac{2}{a+1}\)

3: \(=\dfrac{x^4-4x^2+4x^2}{x^2-4}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x^2-4\right)}\cdot\dfrac{x^2-4}{x-2}\right)\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2}{x-4}+\dfrac{2-3x}{x\left(x-2\right)}\right)\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x^2-4\right)+\left(2-3x\right)\left(x-4\right)}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-4x+2x-8-3x^2+12x}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-3x^2+10x-8}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^3-x^2-2x^2+2x+8x-8}{x\left(x-2\right)\left(x-4\right)}\)

\(=\dfrac{x^3\left(x-1\right)\left(x^2-2x+8\right)}{\left(x-2\right)^2\cdot\left(x+2\right)\left(x-4\right)}\)

 

 

27 tháng 4 2017

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

26 tháng 5 2018

a) A = \(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\) ( x # 0 ; x # 3 ; x# - 3)

A = \(\left(\dfrac{-\left(x-3\right)}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A = \(\left(\dfrac{-x-3}{x+3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A = \(\dfrac{-3}{x+3}.\dfrac{x+3}{3x^2}=\dfrac{-1}{x^2}\)

b) Với x = \(\dfrac{-1}{2}\) , ta có :

A = \(\dfrac{-1}{x^2}=\dfrac{-1}{\left(\dfrac{-1}{2}\right)^2}=-4\)

c) Để A < 0

\(\dfrac{-1}{x^2}< 0\)

⇔ x2 > 0 ( luôn đúng ∀x # 0)

KL...

20 tháng 8 2016

a)ĐKXĐ:x>=0;x khác 9

A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)\(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]

 A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)\(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]

A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]

A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)

 

 

8 tháng 2 2018

a. Với a = -3 ta được:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow x=-2\)

8 tháng 2 2018

Giải phương trình :

\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)

a) Với a = -3

\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)

Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)

\(x^2+6x+9-x^2+6x-9+30=0\)

\(\Leftrightarrow12x+30=0\)

\(\Leftrightarrow12x=-30\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)

b) Với a = 1

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)

Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)

Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)

\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)

\(\Leftrightarrow2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Tập nghiệm của pt là : \(S=\left\{-3\right\}\)

11 tháng 3 2017

Tớ không biết chắc đâu nhé ta có từ pt:

x2+x-2=x2-(m-1)x-m \(\Leftrightarrow\) m.x+m-2=0

Nếu m=0 thì pt vô nghiệm 0x=2

Nếu m khác 0 thì pt là pt bậc nhất có một nghiệm duy nhất là x= \(\dfrac{2-m}{m}\)