Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\Delta=9-8=1>0\)
Nên pt luôn có 2 nghiệm
Theo hệ thức Vi-ét có
\(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=2\end{cases}}\)
*Lập pt bậc 2 ẩn y
Có \(S_y=y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}\)
\(=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)
\(=3+\frac{3}{2}\)
\(=\frac{9}{2}\)
\(P_y=y_1.y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\)
\(=x_1x_2+1+1+\frac{1}{x_1x_2}\)
\(=2+2+\frac{1}{2}\)
\(=\frac{9}{2}\)
Vậy pt cần lập có dạng \(y^2-Sy+P=0\)
\(\Leftrightarrow y^2-\frac{9}{2}+\frac{9}{2}=0\)
\(\Leftrightarrow2y^2-9y+9=0\)
\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)
a. Thay \(m=-2\) vào pt đề cho ta được pt:
\(x^2-6x-7=0\left(2\right)\)
Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)
b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)
Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)
\(\Leftrightarrow m\le6\)
Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)
Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)
Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:
\(6\left(2m-3\right)=24\)
\(\Rightarrow2m-3=4\)
\(\Rightarrow2m=7\)
\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)
Vậy .............
b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)
Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)
Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)
Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)
\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)
\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)
\(5x^2-6x-2=0\)
\(\Delta'=\left(-6\right)^2-4\cdot5\cdot\left(-2\right)=76>0\)
=> Phương trình có 2 nghiệm
Theo Viet, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6}{5}\\x_1x_2=\frac{c}{a}=\frac{-2}{5}\end{cases}}\)
Vậy: ...