Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PT có hai nghiệm $x_1,x_2$ (chưa quan tâm có phân biệt hay không) thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta=(2m-1)^2-4m(m-3)\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ 8m+1\geq 0\Leftrightarrow m\geq \frac{-1}{8}\end{matrix}\right.\)
Khi đó áp dụng hệ thức Viete ta có:
\(\left\{\begin{matrix}
x_1+x_2=\frac{1-2m}{m}\\
x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)
Khi đó: \(\frac{1}{x_1}+\frac{1}{x_2}=7\Leftrightarrow \frac{x_1+x_2}{x_1x_2}=7\)
\(\Leftrightarrow \frac{1-2m}{m-3}=7\)
\(( m\neq 3)\Rightarrow 1-2m=7(m-3)\)
\(\Leftrightarrow m=\frac{22}{9}\) (thỏa mãn)
Vậy \(m=\frac{22}{9}\)
Dùng hệ thức Vi-ét nhé:
Để Pt là pt bậc 2 thì m khác 1
Xét delta rồi tìm điều kiện của m
Áp dụng hề thức Vi-et:
x1+x2=1-2m/m
x1.x2=m-3/m
1/x1+1/x2=x1+x2/x1.x2=1-2m/m-3=7
Rồi tìm m là xong
(x2-3x+2)(x2-9x+20)=4
=>(x-1)(x-2)(x-4)(x-5)=4
Đặt x-3=a , phương trình tương đương:
(a+2)(a+1)(a-1)(a-2)=4
=>(a2-1)(a2-4)=4
=>a4-5a2=0
Tự giải nốt nhé!
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
a: Để PT có hai nghiệm trái dấu thì 2m-4<0
=>m<2
b: Khi x=1 thì PT sẽ là \(1+4+2m-4=0\)
=>m=-1/2
\(x_1+x_2=-4\)
=>x2=-4-1=-5
c: \(\text{Δ}=4^2-4\left(2m-4\right)=16-8m+16=-8m+32\)
ĐểPT có 2 nghiệm thì -8m+32>=0
=>-8m>=-32
=>m<=4
\(x_1^2+x_2^2=10\)
=>(x1+x2)^2-2x1x2=10
\(\Leftrightarrow\left(-4\right)^2-2\left(2m-4\right)=10\)
=>16-4m+8=10
=>24-4m=10
=>4m=14
=>m=7/2
\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)
\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)