Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em mới lớp 7 nên không chắc ạ.
\(2x^2-4x+\left(m-1\right)=0\)
Từ gt suy ra \(x_1+x_2=-x_2\)
Mặt khác,theo hệ thức viet thì \(x_1+x_2=\frac{4}{2}=2\)
Suy ra \(-x_2=2\Rightarrow x_2=-2\).Thay x = -2 vào pt ban đầu:
\(2.\left(-2\right)^2-4.\left(-2\right)+\left(m-1\right)=0\)
Tức là \(m-1=-16\Leftrightarrow m=-15\)
Bạn giải đúng rồi nhé, nhưng cách giải hơi rắc rối thôi.
a) Đặt \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall m\)
=>pt luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1;x2 là 2 nghiệm phân biệt của pt. Theo hệ thức Vi-ét: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{cases}}\)
c) \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\Leftrightarrow\left(2m+2\right)^2-2\left(m-4\right)=10\)
\(\Leftrightarrow4m^2+8m+4-2m+8=10\Leftrightarrow4m^2+6m+2=0\Leftrightarrow2m^2+3m+1=0\)
\(\Leftrightarrow2m^2+2m+m+1=0\Leftrightarrow2m\left(m+1\right)+\left(m+1\right)=0\Leftrightarrow\left(m+1\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\2m+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-\frac{1}{2}\end{cases}}\)
theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+3}{2}\\x_1.x_2=\dfrac{m+1}{4}\end{matrix}\right.\)
để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
<=>\(\dfrac{\dfrac{2m+3}{2}}{\dfrac{m+1}{4}}< 4\)<=>\(\dfrac{2\left(2m+3\right)}{m+1}< 4\)
<=>4m+6<4m+4<=>6<4
không có giá trị m nào để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
\(x^2-\left(2m+1\right)x+m^2+2=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4m^2-8=4m^2+4m+1-4m^2-8=4m-7\)
Để phương trình có 2 nghiệm x1, x2 thì: \(\Delta\ge0\Leftrightarrow4m-7\ge0\Leftrightarrow m\ge\frac{7}{4}\).
Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+2\end{cases}}\)
Kết hợp với đề bài ta có hệ: \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Giải (1) và (3) ta được: \(\hept{\begin{cases}x_1=4m-2\\x_2=3-2m\end{cases}}\)Thay vào (2) ta được:
\(m^2+2=\left(4m-2\right)\left(3-2m\right)=16m-8m^2-6\)
\(\Leftrightarrow9m^2-16m+8=0\left(4\right)\)
Mà \(9m^2-16m+8=\left(3m-\frac{8}{3}\right)^2+\frac{8}{9}\ge\frac{8}{9}\forall m\)
\(\Rightarrow\)Phương trình (4) vô nghiệm.
Không có m thỏa mãn.
Chỗ kết hợp với đề bài mình đánh thiếu \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Mình có ý tưởng thế này.
Theo vi et thì
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Ta có:
\(\dfrac{1}{x_1}+\dfrac{1}{2x_2}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{2x_2+x_1}{2x_1x_2}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{2+x_2}{2m}=\dfrac{1}{30}\)
\(\Leftrightarrow m=30+15x_2\)
Vì x2 là 1 nghiệm của pt nên ta có:
\(x^2_2-2x_2+m=0\)
\(\Leftrightarrow x^2_2-2x_2+30+15x_2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2=-10\\x_2=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_1=12\\x_1=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=-120\\m=-15\end{matrix}\right.\)
Theo mình thì bài của bạn thiếu điều kiện để $m$ để PT có 2 nghiệm phân biệt (\(\Delta>0\) )
Sau khi thu được điều kiện cần của $m$ thì đoạn tiếp sau đó của bạn không có vấn đề, có chăng bạn biến đổi hơi phức tạp.
Sao bạn không dùng vi ét cho dễ không cần biến đổi nhiều