Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có nghiệm kép suy ra delta = 0
Ta có : \(\Delta=\left(2\sqrt{3m-1}\right)^2-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1-\sqrt{m^2-6m+17}\right)=0\)
\(< =>3m-1-\sqrt{m^2-6m+17}=0\)
\(< =>\left(3m-1\right)^2=\sqrt{m^2-6m+17}^2\)
\(< =>\left(3m\right)^2-2.3m+1^2=m^2-6m+17\)
\(< =>9m^2-6m=m^2-6m+16\)
\(< =>9m^2-6m-\left(m^2-6m+16\right)=0\)
\(< =>9m^2-m^2-6m+6m-16=0\)
\(< =>8m^2-16=0\)\(< =>m^2-2=0\)
\(< =>\orbr{\begin{cases}m=-\sqrt{2}\\m=\sqrt{2}\end{cases}}\)
Đúng ko ạ ?
Để phương trình có nghiệm kép thì 6^2-4(m-2)=0
=>4(m-2)=36
=>m-2=9
=>m=11
=>x^2+6x+9=0
=>x=-3
Đk: 3m - 1 >= 0 <=> m>= 1/3
Để phương trình có nghiệm kép
<=> \(\Delta=4.\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)
<=> 9m2 - 6m + 1 = m2 - 6m + 17
<=> 8m2 = 16
<=> \(m=\sqrt{2}\)(Vì m >= 1/3).
Vậy với m = căn 2 thì phương trình có nghiệm kép.
x1 = x2 = \(-2\sqrt{3\sqrt{2}-1}\)
c) tim x1 và x2 theo ct;
x1= 16 +can denta ....tu lam
d) c/a <0
lam dc roi chu
Để phương trình có nghiệm kép: \(\Delta=0\)
<=> \(\left(\sqrt{3m-1}\right)^2-\sqrt{m^2-6m+17}=0\)
<=> \(\sqrt{m^2-6m+17}=3m-1\)
<=> \(\hept{\begin{cases}m^2-6m+17=9m^2-6m+1\\3m-1\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m^2-2=0\\m\ge\frac{1}{3}\end{cases}}\Leftrightarrow m=\sqrt{2}\)
Vậy:...
a: TH1: m=3
=>2x-5=0
=>x=5/2(nhận)
TH2: m<>3
Δ=2^2-4*(m-3)*(-5)
=4+20(m-3)
=4+20m-60=20m-56
Để phương trình có nghiệm kép thì 20m-56=0
=>m=2,8
=>-0,2x^2+2x-5=0
=>x^2-10x+25=0
=>x=5
b: Để phươg trình có hai nghiệm pb thì 20m-56>0
=>m>2,8
Δ=(-4)^2-4*2*(m-5)
=16-8(m-5)=16-8m+40=-8m+56
Để phương trình có nghiệm kép thì 56-8m=0
=>m=7
=>2x^2-4x+2=0
=>x^2-2x+1=0
=>x=1